955 resultados para Water conservation


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Half title: The story of water conservation in Virginia.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cover title.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

"PRT-3219183"--Colophon.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

"January 1990."

Relevância:

70.00% 70.00%

Publicador:

Resumo:

"November 1984." -- Cover.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Issued Sept. 1979.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

One map on 1 folded leaf of plates in pocket.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Spine title: Ground-water conditions, well yields in fractured rocks, southwestern Nevada County, CA.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study investigated how harvest and water management affected the ecology of the Pig Frog, Rana grylio. It also examined how mercury levels in leg muscle tissue vary spatially across the Everglades. Rana grylio is an intermediate link in the Everglades food web. Although common, this inconspicuous species can be affected by three forms of anthropogenic disturbance: harvest, water management and mercury contamination. This frog is harvested both commercially and recreationally for its legs, is aquatic and thus may be susceptible to water management practices, and can transfer mercury throughout the Everglades food web. ^ This two-year study took place in three major regions: Everglades National Park (ENP), Water Conservation Areas 3A (A), and Water Conservation Area 3B (B). The study categorized the three sites by their relative harvest level and hydroperiod. During the spring of 2001, areas of the Everglades dried completely. On a regional and local scale Pig Frog abundance was highest in Site A, the longest hydroperiod, heavily harvested site, followed by ENP and B. More frogs were found along survey transects and in capture-recapture plots before the dry-down than after the dry-down in Sites ENP and B. Individual growth patterns were similar across all sites, suggesting differences in body size may be due to selective harvest. Frogs from Site A, the flooded and harvested site, had no differences in survival rates between adults and juveniles. Site B populations shifted from a juvenile to adult dominated population after the dry-down. Dry-downs appeared to affect survival rates more than harvest. ^ Total mercury in frog leg tissue was highest in protected areas of Everglades National Park with a maximum concentration of 2.3 mg/kg wet mass where harvesting is prohibited. Similar spatial patterns in mercury levels were found among pig frogs and other wildlife throughout parts of the Everglades. Pig Frogs may be transferring substantial levels of mercury to other wildlife species in ENP. ^ In summary, although it was found that abundance and survival were reduced by dry-down, lack of adult size classes in Site A, suggest harvest also plays a role in regulating population structure. ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The hydrologic regime of Shark Slough, the most extensive long hydroperiod marsh in Everglades National Park, is largely controlled by the location, volume, and timing of water delivered to it through several control structures from Water Conservation Areas north of the Park. Where natural or anthropogenic barriers to water flow are present, water management practices in this highly regulated system may result in an uneven distribution of water in the marsh, which may impact regional vegetation patterns. In this paper, we use data from 569 sampling locations along five cross-Slough transects to examine regional vegetation distribution, and to test and describe the association of marsh vegetation with several hydrologic and edaphic parameters. Analysis of vegetation:environment relationships yielded estimates of both mean and variance in soil depth, as well as annual hydroperiod, mean water depth, and 30-day maximum water depth within each cover type during the 1990’s. We found that rank abundances of the three major marsh cover types (Tall Sawgrass, Sparse Sawgrass, and Spikerush Marsh) were identical in all portions of Shark Slough, but regional trends in the relative abundance of individual communities were present. Analysis also indicated clear and consistent differences in the hydrologic regime of three marsh cover types, with hydroperiod and water depths increasing in the order Tall Sawgrass , Sparse Sawgrass , Spikerush Marsh. In contrast, soil depth decreased in the same order. Locally, these differences were quite subtle; within a management unit of Shark Slough, mean annual values for the two water depth parameters varied less than 15 cm among types, and hydroperiods varied by 65 days or less. More significantly, regional variation in hydrology equaled or exceeded the variation attributable to cover type within a small area. For instance, estimated hydroperiods for Tall Sawgrass in Northern Shark Slough were longer than for Spikerush Marsh in any of the other regions. Although some of this regional variation may reflect a natural gradient within the Slough, a large proportion is the result of compartmentalization due to current water management practices within the marsh.We conclude that hydroperiod or water depth are the most important influences on vegetation within management units, and attribute larger scale differences in vegetation pattern to the interactions among soil development, hydrology and fire regime in this pivotal portion of Everglades.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Interferometric synthetic aperture radar (InSAR) techniques can successfully detect phase variations related to the water level changes in wetlands and produce spatially detailed high-resolution maps of water level changes. Despite the vast details, the usefulness of the wetland InSAR observations is rather limited, because hydrologists and water resources managers need information on absolute water level values and not on relative water level changes. We present an InSAR technique called Small Temporal Baseline Subset (STBAS) for monitoring absolute water level time series using radar interferograms acquired successively over wetlands. The method uses stage (water level) observation for calibrating the relative InSAR observations and tying them to the stage's vertical datum. We tested the STBAS technique with two-year long Radarsat-1 data acquired during 2006–2008 over the Water Conservation Area 1 (WCA1) in the Everglades wetlands, south Florida (USA). The InSAR-derived water level data were calibrated using 13 stage stations located in the study area to generate 28 successive high spatial resolution maps (50 m pixel resolution) of absolute water levels. We evaluate the quality of the STBAS technique using a root mean square error (RMSE) criterion of the difference between InSAR observations and stage measurements. The average RMSE is 6.6 cm, which provides an uncertainty estimation of the STBAS technique to monitor absolute water levels. About half of the uncertainties are attributed to the accuracy of the InSAR technique to detect relative water levels. The other half reflects uncertainties derived from tying the relative levels to the stage stations' datum.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The northern Everglades Water Conservation Areas have experienced recent ecological shifts in primary producer community structure involving marl periphyton mats and dense Typha-dominated macrophyte stands. Multiple investigations have identified phosphorus (P) as a driver of primary producer community structure, but effects of water impoundment beginning in the 1950s and changes in water hardness [e.g., (CaCO3)] have also been identified as a concern. In an effort to understand pre-1950, primary producer community structure and identify community shifts since 1950, we measured pigment proxies on three sediment cores collected in Water Conservation Area-2A (WCA-2A) along a phosphorus enrichment gradient. Photosynthetic pigments, sediment total phosphorus content (TP), organic matter, total organic carbon and nitrogen were used to infer historic primary producer communities and changes in water quality and hydrology regulating those communities. Excess 210Pb was used to establish historic dates for the sediment cores. Results indicate the northern area of WCA-2A increased marl deposition and increased algal abundance ca. 1920. This increase in (presumably) calcareous periphyton before intensive agriculture and impoundment suggest canal-derived calcium inputs and to some extent early drainage effects played a role in initiating this community shift. The northern area community then shifted to Typha dominance around 1965. The areas to the south in WCA-2A experienced increased marl deposition and algal abundance around or just prior to 1950s impoundment, the precise timing limited by core age resolution. Continued increases in algal abundance were evident after 1950, coinciding with impoundment and deepening of canals draining into WCA-2A, both likely increasing water mineral and nutrient concentrations. The intermediate site developed a Typha-dominated community ca. 1995 while the southern-most core site WCA-2A has yet to develop Typha dominance. Numerous studies link sediment TP >650 mg P/kg to marsh habitat degradation into Typha-dominance. The northern and intermediate cores where Typha is currently support this previous research by showing a distinct shift in the sediment record to Typha dominance corresponding to sediment TP between 600 and 700 mg P/kg. These temporal and spatial differences are consistent with modern evidence showing water-column gradients in mineral inputs (including Ca, carbonates, and phosphorus) altering primary producer community structure in WCA-2A, but also suggest hydroperiod has an effect on the mechanisms regulating periphyton development and Typha dominance.