991 resultados para Water Pollutants


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Water-dispersible, photocatalytic Fe3O4@TiO2 core shell magnetic nanoparticles have been prepared by anchoring cyclodextrin cavities to the TiO2 shell, and their ability to capture and photocatalytically destroy endocrine-disrupting chemicals, bisphenol A and dibutyl phthalate, present in water, has been demonstrated. The functionalized nanoparticles can be magnetically separated from the dispersion after photocatalysis and hence reused. Each component of the cyclodextrin-functionalized Fe3O4@TiO2 core shell nanoparticle has a crucial role in its functioning. The tethered cyclodextrins are responsible for the aqueous dispersibility of the nanoparticles and their hydrophobic cavities for the capture of the organic pollutants that may be present in water samples. The amorphous TiO2 shell is the photocatalyst for the degradation and mineralization of the organics, bisphenol A and dibutyl phthalate, under UV illumination, and the magnetism associated with the 9 nm crystalline Fe3O4 core allows for the magnetic separation from the dispersion once photocatalytic degradation is complete. An attractive feature of these ``capture and destroy'' nanomaterials is that they may be completely removed from the dispersion and reused with little or no loss of catalytic activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For the purpose of water purification, novel and low-cost adsorbents which are promising replacements for activated carbon are being actively pursued. However, a single-phase material that adsorbs both cationic and anionic species remains elusive. Hence, a low-cost, multiphase adsorbent bed that purifies water containing both anionic and cationic pollutants is a desirable alternative. We choose anionic (Congo red, Orange G) and cationic (methylene blue, malachite green) dyes as model pollutants. These dyes are chosen since they are widely found in effluents from textile, leather, fishery, and pharmaceutical industries, and their carcinogenic, mutagenic, genotoxic, and cytotoxic impact on mammalian cells is well-established. We show that ZnO, (Zn0.24Cu0.76)O and cobalt ferrite based multiphase fixed adsorbent bed efficiently adsorbs model anionic (Congo red, Orange G) and cationic (methylene blue and malachite green) pollutants, and their complex mixtures. All adsorbent phases are synthesized using room-temperature, high-yield (similar to 96-100%), green chemical processes. The nanoadsorbents are characterized by using X-ray powder diffraction (XRD), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) surface area analysis, and zeta potential measurements. The constituent nanophases are deliberately chosen to be beyond 50 nm, in order to avoid the nanotoxic size regime of oxides. Adsorption characteristics of each of the phases are examined. Isotherm based analysis shows that adsorption is both spontaneous and highly favorable. zeta potential measurements indicate that electrostatic interactions are the primary driving force for the observed adsorption behavior. The isotherms obtained are best described using a composite Langmuir-Freundlich model. Pseudo-first-order, rapid kinetics is observed (with adsorption rate constants as high as 0.1-0.2 min(-1) in some cases). Film diffusion is shown to be the primary mechanism of adsorption.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we present a massively parallel open source solver for Richards equation, named the RichardsFOAM solver. This solver has been developed in the framework of the open source generalist computational fluid dynamics tool box OpenFOAM (R) and is capable to deal with large scale problems in both space and time. The source code for RichardsFOAM may be downloaded from the CPC program library website. It exhibits good parallel performances (up to similar to 90% parallel efficiency with 1024 processors both in strong and weak scaling), and the conditions required for obtaining such performances are analysed and discussed. These performances enable the mechanistic modelling of water fluxes at the scale of experimental watersheds (up to few square kilometres of surface area), and on time scales of decades to a century. Such a solver can be useful in various applications, such as environmental engineering for long term transport of pollutants in soils, water engineering for assessing the impact of land settlement on water resources, or in the study of weathering processes on the watersheds. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Drinking water scarcity is a major issue that needs to be addressed seriously. Water needs to be purified from organic pollutants and bacterial contamination. In this study, sunlight driven photocatalysis for the degradation of dyes and bacterial inactivation has been conducted over TiO2 nanoparticles (CST) and TiO2 nanobelts (CSTNB). TiO2 nanoparticles were synthesized by a solution combustion process using ascorbic acid as a fuel. Acid etched TiO2 nanobelts (CSTNB) were synthesized using combustion synthesized TiO2 as a novel precursor. The mechanism of formation of TiO2 nanobelts was hypothesized. The antibacterial activity of combustion synthesized TiO2 and acid etched TiO2 nanobelts were evaluated against Escherichia coli and compared against commercial TiO2. Various characterization studies like X-ray diffraction analysis, BET surface area analysis, diffused reflectance measurements were performed. Microscopic structures and high resolution images were analyzed using scanning electron microscopy, transmission electron microscopy. The extent of photo-stability and reusability of the catalyst was evaluated by conducting repeated cycles of photo degradation experiments and was compared to the commercial grade TiO2. The reactive radical species responsible for high photocatalytic and antibacterial activity has been determined by performing multiple scavenger reactions. The excellent charge transfer mechanism, high generation of hydroxyl and hole radicals resulted in enhanced photocatalytic activity of the acid etched TiO2 nanobelts compared to commercial TiO2 and nanobelts made from commercial TiO2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study proposes a wastewater electrolysis cell (WEC) for on-site treatment of human waste coupled with decentralized molecular H2 production. The core of the WEC includes mixed metal oxides anodes functionalized with bismuth doped TiO2 (BiOx/TiO2). The BiOx/TiO2 anode shows reliable electro-catalytic activity to oxidize Cl- to reactive chlorine species (RCS), which degrades environmental pollutants including chemical oxygen demand (COD), protein, NH4+, urea, and total coliforms. The WEC experiments for treatment of various kinds of synthetic and real wastewater demonstrate sufficient water quality of effluent for reuse for toilet flushing and environmental purposes. Cathodic reduction of water and proton on stainless steel cathodes produced molecular H2 with moderate levels of current and energy efficiency. This thesis presents a comprehensive environmental analysis together with kinetic models to provide an in-depth understanding of reaction pathways mediated by the RCS and the effects of key operating parameters. The latter part of this thesis is dedicated to bilayer hetero-junction anodes which show enhanced generation efficiency of RCS and long-term stability.

Chapter 2 describes the reaction pathway and kinetics of urea degradation mediated by electrochemically generated RCS. The urea oxidation involves chloramines and chlorinated urea as reaction intermediates, for which the mass/charge balance analysis reveals that N2 and CO2 are the primary products. Chapter 3 investigates direct-current and photovoltaic powered WEC for domestic wastewater treatment, while Chapter 4 demonstrates the feasibility of the WEC to treat model septic tank effluents. The results in Chapter 2 and 3 corroborate the active roles of chlorine radicals (Cl•/Cl2-•) based on iR-compensated anodic potential (thermodynamic basis) and enhanced pseudo-first-order rate constants (kinetic basis). The effects of operating parameters (anodic potential and [Cl-] in Chapter 3; influent dilution and anaerobic pretreatment in Chapter 4) on the rate and current/energy efficiency of pollutants degradation and H2 production are thoroughly discussed based on robust kinetic models. Chapter 5 reports the generation of RCS on Ir0.7Ta0.3Oy/BixTi1-xOz hetero-junction anodes with enhanced rate, current efficiency, and long-term stability compared to the Ir0.7Ta0.3Oy anode. The effects of surficial Bi concentration are interrogated, focusing on relative distributions between surface-bound hydroxyl radical and higher oxide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although other research studies on areas such as the physical-chemical, nutrients and phytoplankton status of Lake Kyoga systems have been given a lot of attention (e.g. Mungoma 1988 and NaFIRRI 2006), efforts to determine the pollution status of this system, especially by heavy metals as one of the worldwide emerging environmental problems, is still limited. Many trace metals are regarded as serious pollutants of aquatic ecosystems because of their persistence, toxicity and ability to be incorporated into food chains (Mwamburi J., and Nathan O.F., 1997). Given the rapid human population growth and the associated economic activities both within the rural and urban areas in Uganda, such fish production systems are becoming very prone to various kinds of pollution including that by heavy metals. Anthropogenic factors such deforestation, use of chemicals and dumping of metallic products, spillages of fuels from outboard engines and many others and or natural processes involving atmospheric deposition by wind or rain, surface run-offs and streams flows from the catchment introduces heavy metals into the lake environment,.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biochemical ecotoxicology and biomarkers using are a new sciences that are used for biomonitoring in aquatic environment. Biomonitoring plays a vital role in strategies to identify, assess, and control contaminants. On the other hands in recent year's attention to polycyclic Aromatic Hydrocarbons (PAHs) and heavy metals increased in aquatic environments because of their carcinogenic and mutagenic properties combined with their nearly ubiquitous distribution in depositional environments by oil pollution or industrial waste waters. The present research aimed to assess PAHs and Ni, V levels in surface sediments and bivalves (Anodonta cygnea)and the effects of PAHs and heavy metals (Ni,V) on the hemocyte of the Anodonta cygnea were investigated in 2 stations (Mahrozeh, Selke in Anzali Lagoon, North of Iran). Samples were collected during at 2 different periods of the year, Dry and rain seasons, (June & September) and to confirm our first observations, Cage station is added. The bivalves hemocytes were monitored for membrane injury by NRR methods (neutral red retention assay). Heavy metal (Ni, V) concentrations were determined by Atomic Absorption in Anodonta cygnea and the sediments in Anzali Lagoon. The vanadium concentration in bivalves and sediments was ND(not detect )-0.4231 μg/g and 1.4381-306.9603 μg/g dry weight respectively. Nickel concentration in bivalves and sediments was 0.0231-1.3351, 0.4024-19.3561 μg/g dry weight respectively. PAHs concentrations were determined by GC-Mass in Anodonta cygnea and the sediments. Average concentration of PAHs is 115-373.788 ng/g dry weight in bivalves and average concentration of PAHs is 34.85-1339.839 ng/g dry weight in sediments. Bioaccumulation sediments factor(BASF) is high about PAHs (>1) and BASF is low for Ni, V (<1) . Internal Damage mechanisms of bivalves hemocytes (cell mortality, dye leakage, decreased membrane stability, are observed (Lowe Methods). Statistical analysis was used to explore the relationship between altered cellular and above contaminants. There are power and negative correlations between PAHs and NRR method for hemocytes in Anodonta cygnea (P<0.0005), but good correlation is not observed between Ni, V and NRR method for hemocytes in every time. This research indicates that the NRR assay is a useful screening technique able to discriminate polluted sites and at first we announce that Anodonta cygnea hemocytes are efficient biomarker for PAHs pollutants in fresh water.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nakivubo swamp (papyrus wetland) is located in the south east of the city of Kampala, Uganda. This swamp has been receiving waste water from Nakivubo channel for more than two decades. This investigation was aimed at monitoring the level of pollutants (nutrients and faecal coliforms) as the waste water filtrates through the swamp and the flow patterns of waste water through the swamp. From this preliminary investigation it was found out that the waste water is not evenly distributed over the swamp. Also high levels of pollutants seem to filtrate through the swamp and enter Inner Murchison Bay - Lake Victoria. Further research is under way to investigate in more detail the capacity of Nakivubo swamp to remove nutrients/pollutants from waste water flowing through it and the dominant mechanisms/processes involved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To characterize the contamination of anthropogenic organic contaminants in the aquatic environment of Chaohu Lake, China, 7 samples for both water and surface sediment were collected in the lake. Organic contaminants were extracted by solid phase extraction (SPE) and Soxhlet extraction from the water and surface sediment samples, respectively, and then analyzed by GC-MS. One hundred and twenty kinds of organic chemicals were detected in these samples including phenol, benzene series, benzaldehydes, ethanol, polycyclic aromatic hydrocarbons (PAHs), sulfur compounds, alcoholic halides, amines, ketones, esters, alkenes and alkanes. Among them, 13 kinds of chemicals were identified as priority pollutants listed by the U.S. Environmental Protection Agency (EPA), such as phthalate esters (PAEs) and PAHs. Besides, the concentrations of 19 of PAEs and PAHs including, priority pollutants identified were also determined. Bis(2-ethylhexyl)phthalate, the predominant component of the analyzed pollutants, was in the range from 72.34 ng g(-1) DW to 613.71 ng g(-1) DW, 14.80 ng L-1 to 47.05 ng L-1 in sediment and water, respectively. The results indicated that the northwest part of the lake was heavily polluted by domestic and industrial wastewater.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The concentrations of major anions and cations, nitrogen and phosphorus, dissolved and particulate trace elements, and organic pollutants were determined for the middle and lower reaches of the Yangtze River (Changjiang) from below the Three Gorges Dam (TGD) to the mouth at Shanghai in November 2006. The concentration of dissolved inorganic phosphate (DIP) was constant at a low level of 6-8 mu gP/L, but the concentration of nitrate (NO3-) approximately doubled downstream and was closely correlated with K+. This translated to a daily load of well over 1000 It of dissolved inorganic nitrogen (DIN) at Datong. The average concentrations of dissolved Pb (0.078 +/- 0.023 mu g/L), Cd (0.024 +/- 0.009 mu g/L), Cr(0.57 +/- 0.09 mu g/L), Cu (1.9 +/- 0.7 mu g/L), and Ni (0.50 +/- 0.49 mu g/L) were comparable with those in other major world rivers, while As (3.3 +/- 1.3 mu g/L) and Zn (1.5 +/- 0.6 mu g/L) were higher by factors of 5.5 and 2.5, respectively. The trace element contents of suspended particles of As (31 +/- 28 mu g/g), Pb (83 +/- 34 mu g/g), and Ni (52 +/- 16 mu g/g) were close to maximum concentrations recommended for rivers by the European Community (EC). The average concentrations of Cd (2.6 +/- 1.6 mu g/g), Cr (185 +/- 102 mu g/g), Cu (115 +/- 106 mu g/g), and Zn (500 +/- 300 mu g/g) exceeded the EC standards by a factor of two, and Hg (4.4 +/- 4.7 mu g/g) by a factor of 4 to 5. Locally occurring peak concentrations exceed these values up to fourfold, among them the notorious elements As, Hg, and Tl. All dissolved and particulate trace element concentrations were higher than estimates made twenty years ago [Zhang, J., Geochemistry of trace metals from Chinese river/estuary systems: an overview. Estuar Coast Shelf Sci 1995; 41: 631-658.]. The enormous loads of anthropogenic pollutants disposed to the river were diluted by the large water discharge of the Yangtze even during the lowest flow resulting in the relatively low concentration levels of trace elements and organic pollutants observed. We estimated loads of e.g. As, Pb and Ni to the East China Sea to be about 4600 kg As d(-1), 3000 kg Pb d(-1), and 2000 kg Ni d(-1). About 6000 t d(-1) of dissolved organic carbon (DOC) was delivered into the sea at the time of our cruise. We tested for 236 organic pollutants, and only the most infamous were found to be barely above detection limits. We estimated that the load of chlorinated compounds, aromatic hydrocarbons, phenols, and PAHs were between 500 and 3500 kg d(-1). We also detected eight herbicides entering the estuary with loads of 5-350 kg d(-1). The pollutant load, even when at low concentrations, are considerable and pose an increasing threat to the health of the East China Sea ecosystem. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Samples of groundwater, river water, river sediment, paddy soil, rice seeds, hen eggs, fish, umbilical cord blood, and newborn meconium were collected from October 2002 to October 2003 near a large site in China used for the disassembly of obsolete transformers and other electronic or electrical waste. Six indicator PCB congeners, three non-ortho dioxin-like PCB congeners, and six organochlorine pesticides were determined in the samples by GC with electron capture detector. The results demonstrated that the local environment and edible foods had been seriously polluted by toxic PCBs and organochlorine pesticides. The actual daily intakes (ADIs) of these pollutants were estimated for local residents living in the area. The intake data showed that the contents of PCBs in these local residents were substantial, as the ADI estimates greatly exceed the reference doses set by the World Health Organization and the United States Agency for Toxic Substances and Disease Registry. The presence of the indicator PCB congeners in the cord blood and the meconium samples, as well as significant correlations (r(2) > 0.80, p < 0.05) between these levels, suggests a potential biotransfer of these indicators from mothers to their newborns. This preliminary study showed that obsolete transformers and other electronic or electrical waste can be an important source for the emission of persistent organic pollutants into the local environment, such as through leakage, evaporation, runoff, and leaching. Contamination from this source appears to have reached the level considered to be a serious threat to environmental and human health around the disassembly site.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The feasibility of an inexpensive wastewater treatment system is evaluated in this study. An integrated biological pond system was operated for more than 3 years to purify the wastewater from a medium-sized city, Central China. The experiment was conducted in 3 phases with different treatment combinations for testing their purification efficiencies. The pond system was divided into 3 functional regions: influent purification, effluent upgrading and multi-utilization. These regions were further divided into several zones and subzones. Various kinds of aquatic organisms, including macrophytes, algae, microorganisms and zooplankton, were effectively cooperating in the wastewater treatment in this system. The system attained high reductions of BOD5, COD, TSS, TN, TP and other pollutants. The purification efficiencies of this system were higher than those of most traditional oxidation ponds or ordinary macrophyte ponds. The mutagenic effect and numbers of bacteria and viruses declined significantly during the process of purification. After the wastewater flowed through the upgrading zone, the concentrations of pollutants and algae evidently decreased. Plant harvesting did not yield dramatic effects on reductions of the main pollutants, though it did significantly affect the biomass productivity of the macrophytes. The effluent from this system could be utilized in irrigation and aquaculture. Some aquatic products were harvested from this system and some biomass was utilized for food, fertilizer, fodder and some other uses. The wastewater was reclaimed for various purposes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this article is to examine the methods and equipment for abating waste gases and water produced during the manufacture of semiconductor materials and devices. Three separating methods and equipment are used to control three different groups of electronic wastes. The first group includes arsine and phosphine emitted during the processes of semiconductor materials manufacture. The abatement procedure for this group of pollutants consists of adding iodates, cupric and manganese salts to a multiple shower tower (MST) structure. The second group includes pollutants containing arsenic, phosphorus, HF, HCl, NO2, and SO3 emitted during the manufacture of semiconductor materials and devices. The abatement procedure involves mixing oxidants and bases in an oval column with a separator in the middle. The third group consists of the ions of As, P and heavy metals contained in the waste water. The abatement procedure includes adding CaCO3 and ferric salts in a flocculation-sedimentation compact device equipment. Test results showed that all waste gases and water after the abatement procedures presented in this article passed the discharge standards set by the State Environmental Protection Administration of China.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

At a time when technological advances are providing new sensor capabilities, novel network capabilities, long-range communications technologies and data interpreting and delivery formats via the World Wide Web, we never before had such opportunities to sense and analyse the environment around us. However, the challenges exist. While measurement and detection of environmental pollutants can be successful under laboratory-controlled conditions, continuous in-situ monitoring remains one of the most challenging aspects of environmental sensing. This paper describes the development and test of a multi-sensor heterogeneous real-time water monitoring system. A multi-sensor system was deployed in the River Lee, County Cork, Ireland to monitor water quality parameters such as pH, temperature, conductivity, turbidity and dissolved oxygen. The R. Lee comprises of a tidal water system that provides an interesting test site to monitor. The multi-sensor system set-up is described and results of the sensor deployment and the various challenges are discussed.