966 resultados para Waste water treatments plants


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Among the numerous approaches to food waste treatment, the food waste disposers method (FWDs), as a newcomer, has become slowly accepted by the general public owing to the worries about its impact on the existing sewage system. This paper aims to justify the role of FWDs in the process of urbanization in order to better prepare a city to take good care of the construction of its infrastructure and the solid waste treatment. Both the literatures and the case study help to confirm that FWDs has no negative effects on the wastewater treatment plant and it is also environmental friendly by reducing the greenhouse gas emissions. In the case study, the Lappeenranta waste water treatment plant has been selected in order to figure out the possible changes to a WWTP following the integration of FWDs: the observation shows only minor changes take place in a WWTP, in case of 25% application, like BOD up 7%, TSS up 6% and wastewater flowrate up 6%, an additional sludge production of 200 tons per year and the extra yield of methane up to 10000m3 per year; however, when the utilization rate of FWD is over 75%, BOD, TSS, and wastewater flowrate will experience more significant changes, thus exerting much pressure on the existing WWTP. FWDs can only be used in residential areas or cities equipped with consummate drainage network within the service sphere of WWTP, therefore, the relevant authority or government department should regulate the installation frequency of FWDs, while promoting the accessory application of FWDs. In the meanwhile, WWTP should improve their treatment process in order to expand their capacity for sludge treatment so as to stay in line with the future development of urban waste management.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phosphorus and nitrogen cause eutrophication of water bodies, causing severe damage to the ecosystem. Eutrophication of the waters causes oxygen depletion, which in turn increases fish mortality, releasing toxins in waters. The released toxins can cause damage to animals and humans, which is the reason in many countries to set emission limits for waste water. Nutrients exist naturally, but due to human activities there is high nutrient leaching to water bodies. Human activity is one of the main reasons to the eutrophication. The aim of this thesis was to estimate the suitability of different water treatment options for Yara Finland’s fertilizer plant’s process waters in Siilinjärvi. The fertilizer plant process waters are high concentrate and especially nitrogen concentrations are high, which bring challenge to the treatment. At the theoretical part was investigated conventional and as well advanced wastewater treatment methods like reverse osmosis, adsorption and ion exchange. Beside different treatment methods corporate environmental requirements, responsibility and strategies were researched. At the empirical part of the thesis the goal was to find out possibil-ities to intensify the efficiency of purification at lamella clarifier with chemical precipitation. In addition possibility to use already existing chemical purifying plant for process waters was estimated. As a result of the research Yara has a possibility to intensify lamella clarifier’s action by addi-tion of calcium hydroxide and thus to obtain the phosphorus and fluorine to precipitate out of the water. But in practice this would be too expensive. It is possible to eliminate nitrogen compounds by adsorption or ammonia stripping, both methods requires additional testing. It is possible to process waters in chemical purifying plant, if ammonium nitrogen has been reduced before. Reverse osmosis is possible to exploit for the phosphoric acid plant’s waters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diplomityö tehtiin Suomen Sokeri Oy:n vesilaitokselle Vihreän Kemian laboratoriossa. Prosessia tarkasteltiin saostuksen osalta ja tavoitteena oli sen kehittäminen esihapetusmenetelmän tai saostuskemikaalin vaihdon avulla. Tarkastelu tehtiin orgaanisen, kiintoaineksen ja metallien poiston, desinfiointitehon sekä ympäristöystävällisyyden osalta. Potentiaalisia esihapetusmenetelmiä (kaliumpermanganaatti, vetyperoksidi, valokemiallinen, H2O2/UV, valokatalyyttinen, TiO2/UV, H2O2/ultraääni sekä esihapetus peretikkahapolla) tarkasteltiin eri pitoisuuksilla ja tehoilla laboratoriomittakaavassa jar-testin avulla. Saostustehoa testattiin alumiinikloridilla ja ferrisulfaatilla. Raakaveden laadun muutoksia eri vaiheissa seurattiin laboratorioanalyysein. Hapetusmenetelmien desinfiointiteho, vaikutukset syanobakteereihin ja -toksiineihin sekä reaktioissa syntyvät sivutuotteet kartoitettiin teorian perusteella. Työn tuloksien perusteella kaliumpermanganatti, vetyperoksidi erityisesti kehittyneenä hapetustekniikkana sekä valokatalyyttinen menetelmä tehostivat vedenkäsittelyä, mutta koska TiO2/UV- tai ultraäänihapetukselle ei ole vielä olemassa kaupallista sovellusta laitosmittakaavassa niin suositeltavat menetelmät ovat KMnO4- ja H2O2(/UV)-hapetukset jatkotutkimussuositukset huomioiden. Peretikkahappo ei tämän tutkimuksen perusteella vaikuttanut suositeltavalta hapetusmenetelmältä, mutta sen sijaan teorian perusteella potentiaaliselta desinfektioaineelta myös talousvedenpuhdistukseen. Opinnäytetyötä eri hapetusmenetelmien osalta talousvedelle ei ole aiemmin tehty eikä peretikkahappohapetuksesta ole laajalti aiempaa tutkimustietoa. Kokeellisen osuuden tulokset antavat uutta tietoa menetelmien soveltuvuudesta vastaaville laitoksille.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atherosclerosis is a major complication of chronic renal failure. Microinflammation is involved in atherogenesis and is associated with uremia and dialysis. The role of dialysate water contamination in inducing inflammation has been debated. Our aim was to study inflammatory markers in patients on chronic dialysis, before and 3 to 6 months after switching the water purification system from deionization to reverse osmosis. Patients had demographic, clinical and nutritional information collected and blood drawn for determination of albumin, ferritin, C-reactive protein (CRP), interleukin-6, and tumor necrosis factor-alpha in both situations. Acceptable levels of water purity were less than 200 colony-forming units of bacteria and less than 1 ng/ml of endotoxin. Sixteen patients died. They had higher median CRP (26.6 vs 11.2 mg/dl, P = 0.007) and lower median albumin levels (3.1 vs 3.9 g/l, P < 0.05) compared to the 31 survivors. Eight patients were excluded because of obvious inflammatory conditions. From the 23 remaining patients (mean age ± SD: 51.3 ± 13.9 years), 18 had a decrease in CRP after the water treatment system was changed. Overall, median CRP was lower with reverse osmosis than with deionization (13.2 vs 4.5 mg/l, P = 0.022, N = 23). There was no difference in albumin, cytokines, subjective global evaluation, or clinical and biochemical parameters. In conclusion, uremic patients presented a clinically significant reduction in CRP levels when dialysate water purification system switched from deionization to reverse osmosis. It is possible that better water treatments induce less inflammation and eventually less atherosclerosis in hemodialysis patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cocoa flavour is greatly influenced by polyphenols. These compounds undergo a series of transformations during cocoa processing leading to the characteristic cocoa flavour. The use of exogenous polyphenol oxidase (PPO) proved to be useful to reduce polyphenol content in cocoa nibs. The effect of a PPO associated or not with air over total phenol and tannin content was evaluated. Cocoa nibs were autoclaved and treated with a PPO or water in the absence or presence of an air flow for 0.5, 1, 2 and 3 hours. Total phenol content was reduced in PPO or water treatments, but when associated with air there was an increase in phenol content. Tannin content was reduced only by the treatment with water and air.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thèse réalisée en cotutelle avec Michèle Prévost (Ph.D), Professeure titulaire au département des génies civil, géologique et des mines de l'École Polytechnique de Montréal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil moisture plays a cardinal role in sustaining eclological balance and agricultural development – virtually the very existence of life on earth. Because of the growing shortage of water resources, we have to use the available water most efficiently by proper management. Better utilization of rainfall or irrigation management depends largely on the water retention characteristics of the soil.Soil water retention is essential to life and it provides an ongoing supply of water to plants between periods of irrigation so as to allow their continued growth and survival.It is essential to maintain readily available water in the soil if crops are to sustain satisfactory growth. The plant growth may be retarded if the soil moisture is either deficient or excessive. The optimum moisture content is that moisture which leads to optimum growth of plant. When watering is done, the amount of water supplied should be such that the water content is equal to the field capacity that is the water remained in the saturated soil after gravitational drainage. Water will gradually be utilized consumptively by plants after the water application, and the soil moisture will start falling. When the water content in the soil reaches the value known as permanent wilting point (when the plant starts wilting) fresh dose of irrigation may be done so that water content is again raised to the field capacity of soil.Soil differ themselves in some or all the properties depending on the difference in the geotechnical and environmental factors. Soils serve as a reservoir of the nutrients and water required for crops.Study of soil and its water holding capacity is essential for the efficient utilization of irrigation water. Hence the identification of the geotechnical parameters which influence the water retention capacity, chemical properties which influence the nutrients and the method to improve these properties have vital importance in irrigation / agricultural engineering. An attempt in this direction has been made in this study by conducting the required tests on different types of soil samples collected from various locations in Trivandrum district Kerala, with and without admixtures like coir pith, coir pith compost and vermi compost. Evaluation of the results are presented and a design procedure has been proposed for a better irrigation scheduling and management.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aquaculture is one of the fastest growing food sectors in the world. Amongst the various branches of aquaculture, shrimp culture has expanded rapidly across the globe because of its faster growth rate, short culture period, high export value and demand in the International market. Indian shrimp farming has experienced phenomenal development over the decades due to its excellent commercial viability. Farmers have adopted a number of innovative technologies to improve the production and to maximize the returns per unit area. The culture methods adopted can be classified in to extensive, modified extensive and semi intensive based on the management strategies adopted in terms of pond size, stocking density, feeding and environmental control. In all these systems water exchanges through the natural tidal effects, or pump fed either from creek or from estuaries is a common practice. In all the cases, the systems are prone to epizootics due to the pathogen introduction through the incoming water, either brought by vectors, reservoir hosts, infected tissue debris and free pathogens themselves. In this scenario, measures to prevent the introduction of pathogen have become a necessity to protect the crop from the onslaught of diseases as well as to prevent the discharge of waste water in to the culture environment.The present thesis deals with Standardization of bioremediation technology for zero water exchange shrimp culture system

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The term ‘water pollution’ broadly refers to the contamination of water and water bodies (e.g. lakes, rivers, oceans, groundwater etc). Water pollution occurs when pollutants are discharged directly or indirectly into water bodies without adequate treatment to remove the harmful contaminants. This affects not only the plants and organisms living in these bodies of water but also the entire natural biological communities and the biodiversity.Advanced Oxidation Processes (AOPs) have been tested as environment-friendly techniques for the treatment of contaminated water, in view of their ability to convert pollutants into harmless end products. These techniques refer to a set of treatment procedures designed to remove organic or inorganic contaminants in wastewater by oxidation. The contaminants are oxidized by different reagents such as air, oxygen, ozone, and hydrogen peroxide which are introduced in precise, preprogrammed dosages, sequences and combinations under appropriate conditions. The procedure when combined with light in presence of catalyst is known as photocatalysis. When ultrasound (US) is used as the energy source, the process is referred as sonication. Sonication in presence of catalyst is referred as sonocatalysis. Of late, combination of light and sound as energy sources has been tested for the decontamination of wastewater in the presence of suitable catalyst. In this case, the process is referred as sonophotocatalysis. These AOPs are specially advantageous in pollution control and waste water treatment because unlike many other technologies, they do not just transfer the pollutant from one phase to another but completely degrade them into innocuous substances such as CO2 and H2O.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Faisalabad city is surrounded by agricultural lands, where farmers are growing vegetables, grain crops, and fodder for auto-consumption and local marketing. To study the socioeconomic impact and resource use in these urban and peri-urban agricultural production (UPA) systems, a baseline survey was conducted during 2009–2010. A total of 140 households were selected using a stratified sampling method and interviewed with a structured questionnaire. The results revealed that 96 % of the households rely on agriculture as their main occupation. Thirty percent of the households were owners of the land and the rest cultivated either rented or sharecropped land. Most of the families (70 %) were headed by a member with primary education, and only 10 % of the household head had a secondary school certificate. Irrigationwater was obtained from waste water (37 %), canals (27 %), and mixed alternative sources (36 %). A total of 35 species were cultivated in the UPA systems of which were 65% vegetables, 15% grain and fodder crops, and 5% medicinal plants. Fifty-nine percent of the households cultivated wheat, mostly for auto-consumption. The 51 % of the respondents grew cauliflower (Brassica oleracea L.) and gourds (Cucurbitaceae) in the winter and summer seasons, respectively. Group marketing was uncommon and most of the farmers sold their produce at the farm gate (45 %) and on local markets (43 %). Seeds and fertilizers were available from commission agents and dealers on a credit basis with the obligation to pay by harvested produce. A major problem reported by the UPA farmers of Faisalabad was the scarcity of high quality irrigation water, especially during the hot dry summer months, in addition to lacking adequate quantities of mineral fertilizers and other inputs during sowing time. Half of the respondents estimated their daily income to be less than 1.25 US$ and spent almost half of it on food. Monthly average household income and expenses were 334 and 237 US$, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water scarcity and food insecurity are pervasive issues in the developing world and are also intrinsically linked to one another. Through the connection of the water cycle and the carbon cycle this study illustrates that synergistic benefits can be realized by small scale farmers through the implementation of waste water irrigated agroforestry. The WaNuLCAS model is employed using La Huerta agroforestry site in Texcoco, South Central Mexico, as the basis for parameterization. The results of model simulations depicting scenarios of water scarcity and waste water irrigation clearly show that the addition of waste water greatly increases the agroforestry system’s generation of crop yields, above- and below-ground biomass, soil organic matter and carbon storage potential. This increase in carbon sequestration by the system translates into better local food security, diversified household income through payments for ecosystem services and contributes to the mitigation of global climate change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aquesta tesi presenta un projecte de gestió integral d'infraestructures hidràuliques de sanejament a la Conca del riu Besòs. S'han considerat dos sistemes de sanejament (La Garriga i Granollers) amb les seves respectives xarxes de clavegueram i Estacions Depuradores d'Aigües Residuals (EDAR), i un tram del riu Congost, afluent del Besòs, com a medi receptor de les seves aigües residuals. Amb aquesta finalitat es construeix i s'utilitza un Sistema de Suport a la Decisió Ambiental (SSDA). Aquesta eina incorpora l'ús de models de simulació de qualitat de l'aigua pels sistemes de clavegueram, EDAR i riu, com a forma d'extracció de coneixement sobre la gestió integrada d'aquests elements. Aquest coneixement es conceptualitza, posteriorment, en forma d'arbres de decisió, que proporcionaran a l'usuari les actuacions a realitzar davant de les diferents situacions reals de gestió diària.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is now accepted that some human-induced climate change is unavoidable. Potential impacts on water supply have received much attention, but relatively little is known about the concomitant changes in water quality. Projected changes in air temperature and rainfall could affect river flows and, hence, the mobility and dilution of contaminants. Increased water temperatures will affect chemical reaction kinetics and, combined with deteriorations in quality, freshwater ecological status. With increased flows there will be changes in stream power and, hence, sediment loads with the potential to alter the morphology of rivers and the transfer of sediments to lakes, thereby impacting freshwater habitats in both lake and stream systems. This paper reviews such impacts through the lens of UK surface water quality. Widely accepted climate change scenarios suggest more frequent droughts in summer, as well as flash-flooding, leading to uncontrolled discharges from urban areas to receiving water courses and estuaries. Invasion by alien species is highly likely, as is migration of species within the UK adapting to changing temperatures and flow regimes. Lower flows, reduced velocities and, hence, higher water residence times in rivers and lakes will enhance the potential for toxic algal blooms and reduce dissolved oxygen levels. Upland streams could experience increased dissolved organic carbon and colour levels, requiring action at water treatment plants to prevent toxic by-products entering public water supplies. Storms that terminate drought periods will flush nutrients from urban and rural areas or generate acid pulses in acidified upland catchments. Policy responses to climate change, such as the growth of bio-fuels or emission controls, will further impact freshwater quality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An investigation into the speciation and occurrence of nine haloacetic acids (HAAs) was conducted during the period of April 2007 to March 2008 and involved three drinking water supply systems in England, which were chosen to represent a range of source water conditions; these were an upland surface water, a lowland surface water and a groundwater. Samples were collected seasonally from the water treatment plants and at different locations in the distribution systems. The highest HAA concentrations occurred in the upland surface water system, with an average total HAA concentration of 21.3 μg/L. The lowest HAA levels were observed in the groundwater source, with a mean concentration of 0.6 μg/L. Seasonal variations were significant in the HAA concentrations; the highest total HAA concentrations were found during the autumn, when the concentrations were approximately two times higher than in winter and spring. HAA speciation varied among the water sources, with dichloroacetic acid and trichloroacetic acid dominant in the lowland surface water system and brominated species dominant in the upland surface water system. There was a strong correlation between trihalomethanes and HAAs when considering all samples from the three systems in the same data set (r2=0.88); however, the correlation was poor/moderate when considering each system independently.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the increasing frequency and magnitude of warmer days during the summer in the UK, bedding plants which were a traditional part of the urban green landscape are perceived as unsustainable and water-demanding. During recent summers when bans on irrigation have been imposed, use and sales of bedding plants have dropped dramatically having a negative financial impact on the nursery industry. Retaining bedding species as a feature in public and even private spaces in future may be conditional on them being managed in a manner that minimises their water use. Using Petunia x hybrida ‘Hurrah White’ we aimed to discover which irrigation approach was the most efficient for maintaining plants’ ornamental quality (flower numbers, size and longevity), shoot and root growth under water deficit and periods of complete water withdrawal. Plants were grown from plugs for 51 days in wooden rhizotrons (0.35 m (h) x 0.1 m (w) x 0.065 m (d)); the rhizotrons’ front comprised clear Perspex which enabled us to monitor root growth closely. Irrigation treatments were: 1. watering with the amount which constitutes 50% of container capacity by conventional surface drip-irrigation (‘50% TOP’); 2. 50% as sub-irrigation at 10 cm depth (‘50% SUB’); 3. ‘split’ irrigation: 25% as surface drip- and 25% as sub-irrigation at 15 cm depth (‘25/25 SPLIT’); 4. 25% as conventional surface drip-irrigation (‘25% TOP’). Plants were irrigated daily at 18:00 apart from days 34-36 (inclusive) when water was withdrawn for all the treatments. Plants in ‘50% SUB’ had the most flowers and their size was comparable to that of ‘50% TOP’. Differences between treatments in other ‘quality’ parameters (height, shoot number) were biologically small. There was less root growth at deeper soil surface levels for ‘50% TOP’ which indicated that irrigation methods like ‘50% SUB’ and ‘25/25 SPLIT’ and stronger water deficits encouraged deeper root growth. It is suggested that sub-irrigation at 10 cm depth with water amounts of 50% container capacity would result in the most root growth with the maximum flowering for Petunia. Leaf stomatal conductance appeared to be most sensitive to the changes in substrate moisture content in the deepest part of the soil profile, where most roots were situated.