990 resultados para Waste landfill


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The 17-acre landfill southwest of Decatur on the south bank of the Sangamon River was permitted in 1974 as a demolition debris landfill. It originated as an open dump in 1918. The site had a history of not complying with the state landfill rules in the 1980s. The landfill also exceeded its permitted waste disposal limits, by the time that the operations stopped in 1991. The owner failed to comply with an August 1994 court order requiring proper cover to be installed and maintained. Visible leachate seeps (leachate is water that has traveled through the landfill and contacts waste material) and exposed refuse were observed along the bank of the Sangamon River. ... This landfill was one of the 33 landfills in Illinois identified by the Illinois EPA in 1998 as most in need of immediate repairs. The state legislature responded by passing legislation that allocated $50 million over five years to address these 33 sites. These 33 landfills are being managed through the Abandoned Landfill Program.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"31581"--Colophon.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"32946"--Colophon.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"ENR contract no. HW85-01."

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This project investigates the correlation between contaminants and the wood waste present in marine sediments off the shore of the Port of Everett in the former Weyerhaeuser Mill-A pulp mill site. The investigation includes the results of two field studies, which tested contaminant levels in 22 boreholes as well as several surface samples. The contaminants include heavy metals and wood waste byproducts. These results, along with 14 other bore logs, provide the framework for a three-dimensional site model, interpolating the full extent of the depositional units and organic and inorganic chemicals found at Mill-A. The sediments of interest are divided into five depositional units defined by the percent wood content and type of wood: native material (<5% wood), intermediate (<30% wood), sawdust (<30% wood), woodchips (<30% wood), and poorly sorted sands with silt (SM-SP) (0% wood). The contaminants include arsenic, 2,4-dimethylphenol, and total organic carbon. Three-dimensional modeling software, RockWorks, interpolated the discrete borehole data of sediment and contaminants assuming horizontal continuity between sampling locations. The sediment distribution was calculated within concentration ranges for each contaminant of concern. The lowest detection limits, the screening levels, and the cleanup levels defined these ranges. Total organic carbon served as a proxy to estimate the quantity of wood waste in the sediment. As a known byproduct of wood decomposition, 2,4-dimethylphenol was expected to be more prevalent in the depositional units with more wood waste. Finally, arsenic was a proxy for other contaminants to determine if contaminants at Mill-A are dominant in sediments with high percentages of wood waste. The volumetric distribution established that high levels of total organic carbon are present in the sediment with higher percentages of wood waste. This correlation was stronger in the decomposing sawdust-rich sediment than the woodchip-rich sediment. The 2,4-dimethylphenol concentrations above cleanup standards were dominant in the sawdust-rich, intermediate and native sediments. Concentrations of 2,4-dimethylphenol below cleanup levels characterized the native sediment. The distribution of arsenic showed no statistically significant correlation to wood content in sediment. These results do not support the hypothesis of contaminant-rich wood waste, as many of the high concentrations of contaminants were not in the wood-rich sediments. This suggests that the contaminants are more distributed among all depositional units at Mill-A rather than focused within sediments with a high percent of wood waste. Understanding the distribution of potentially toxic compounds with wood waste is important for restoring the Puget Sound waterways to a more habitable environment. Future studies should include new data to validate these results and to limit the uncertainty of the extent of contaminants. Future studies may also find motive in looking for a correlation between contaminants and grain size based on previous studies linking these characteristics. These investigations will benefit the current cleanup effort as well as future cleanup efforts at similarly contaminated waterways.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An anaerobic landfill leachate bioreactor was operated with crystalline cellulose and sterile landfill leacbate until a steady state was reached. Cellulose hydrolysis, acidogenesis, and methanogenesis were measured. Microorganisms attached to the cellulose surfaces were hypothesized to be the cellulose hydrolyzers. 16S rRNA gene clone libraries were prepared from this attached fraction and also from the mixed fraction (biomass associated with cellulose particles and in the planktonic phase). Both clone libraries were dominated by Firmicutes phylum sequences (100% of the attached library and 90% of the mixed library), and the majority fell into one of five lineages of the clostridia. Clone group 1 (most closely related to Clostridium stercorarium), clone group 2 (most closely related to Clostridium thermocellum), and clone group 5 (most closely related to Bacteroides cellulosolvens) comprised sequences in Clostridium group III. Clone group 3 sequences were in Clostridium group XIVa (most closely related to Clostridium sp. strain XB90). Clone group 4 sequences were affiliated with a deeply branching clostridial lineage peripherally associated with Clostridium group VI. This monophyletic group comprises a new Clostridium cluster, designated cluster VIa. Specific fluorescence in situ hybridization (FISH) probes for the five groups were designed and synthesized, and it was demonstrated in FISH experiments that bacteria targeted by the probes for clone groups 1, 2, 4, and 5 were very abundant on the surfaces of the cellulose particles and likely the key cellulolytic microorganisms in the landfill bioreactor. The FISH probe for clone group 3 targeted cells in the planktonic phase, and these organisms were hypothesized to be glucose fermenters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to conduct a number of controlled digestions to obtain easily comparable cellulose solubilisation rates and to compare these rates to those found in the literature to see which operational differences were significant in affecting cellulose degradation during anaerobic digestion. The results suggested that differences in volumetric cellulose solubilisation rates were not indicative of the true performance of cellulose digestion systems. When cellulose solubilisation rates were normalised by the mass of cellulose in the reactor at each time step, the comparison of the rates became more meaningful. Cellulose solubilisation was surface area limited. Therefore, changes in the loading rate of cellulose to the reactor altered the volumetric solubilisation rate without changing the mass normalised rate. Comparison of mass normalised solubilisation rates from this study and the literature demonstrated that differences in reactor configuration and operational conditions did not significantly impact on the solubilisation rate whereas the difference in composition of the microbial communities showed a marked effect. This work highlights the importance of using appropriately normalised data when making comparisons between systems with differing operational conditions. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cause of seasonal failure of a nitrifying municipal landfill leachate treatment plant utilizing a fixed biofilm was investigated by wastewater analyses and batch respirometric tests at every treatment stage. Nitrification of the leachate treatment plant was severely affected by the seasonal temperature variation. High free ammonia (NH3-N) inhibited not only nitrite oxidizing bacteria (NOB) but also ammonia oxidizing bacteria (AOB). In addition, high pH also increased free ammonia concentration to inhibit nitrifying activity especially when the NH4-N level was high. The effects of temperature and free ammonia of landfill leachate on nitrification and nitrite accumulation were investigated with a semi-pilot scale biofilm airlift reactor. Nitrification rate of landfill leachate increased with temperature when free ammonia in the reactor was below the inhibition level for nitrifiers. Leachate was completely nitrified up to a load of 1.5 kg NH4-N m(-3) d(-1) at 28 degrees C. The activity of NOB was inhibited by NH3-N resulting in accumulation of nitrite. NOB activity decreased more than 50% at 0.7 mg NH3-N L-1. Fluorescence in situ hybridization (FISH) was carried out to analyze the population of AOB and NOB in the nitrite accumulating nitrifying biofilm. NOB were located close to AOB by forming small clusters. A significant fraction of AOB identified by probe Nso1225 specifically also hybridized with the Nitrosonlonas specific probe Nsm156. The main NOB were Nitrobacter and Nitrospira which were present in almost equal amounts in the biofilm as identified by simultaneous hybridization with Nitrobacter specific probe Nit3 and Nitrospira specific probe Ntspa662. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many local authorities (LAs) are currently working to reduce both greenhouse gas emissions and the amount of municipal solid waste (MSW) sent to landfill. The recovery of energy from waste (EfW) can assist in meeting both of these objectives. The choice of an EfW policy combines spatial and non-spatial decisions which may be handled using Multi-Criteria Analysis (MCA) and Geographic Information Systems (GIS). This paper addresses the impact of transporting MSW to EfW facilities, analysed as part of a larger decision support system designed to make an overall policy assessment of centralised (large-scale) and distributed (local-scale) approaches. Custom-written ArcMap extensions are used to compare centralised versus distributed approaches, using shortest-path routing based on expected road speed. Results are intersected with 1-kilometre grids and census geographies for meaningful maps of cumulative impact. Case studies are described for two counties in the United Kingdom (UK); Cornwall and Warwickshire. For both case study areas, centralised scenarios generate more traffic, fuel costs and emitted carbon per tonne of MSW processed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The technique of remote sensing provides a unique view of the earth's surface and considerable areas can be surveyed in a short amount of time. The aim of this project was to evaluate whether remote sensing, particularly using the Airborne Thematic Mapper (ATM) with its wide spectral range, was capable of monitoring landfill sites within an urban environment with the aid of image processing and Geographical Information Systems (GIS) methods. The regions under study were in the West Midlands conurbation and consisted of a large area in what is locally known as the Black Country containing heavy industry intermingled with residential areas, and a large single active landfill in north Birmingham. When waste is collected in large volumes it decays and gives off pollutants. These pollutants, landfill gas and leachate (a liquid effluent), are known to be injurious to vegetation and can cause stress and death. Vegetation under stress can exhibit a physiological change, detectable by the remote sensing systems used. The chemical and biological reactions that create the pollutants are exothermic and the gas and leachate, if they leave the waste, can be warmer than their surroundings. Thermal imagery from the ATM (daylight and dawn) and thermal video were obtained and used to find thermal anomalies on the area under study. The results showed that vegetation stress is not a reliable indicator of landfill gas migration, as sites within an urban environment have a cover too complex for the effects to be identified. Gas emissions from two sites were successfully detected by all the thermal imagery with the thermal ATM being the best. Although the results were somewhat disappointing, recent technical advancements in the remote sensing systems used in this project would allow geo-registration of ATM imagery taken on different occasions and the elimination of the effects of solar insolation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT: There has been a growing trend towards the use of biomass as a primary energy source, which now contributes over 54% of the European pulp and paper industry energy needs [1]. The remaining part comes from natural gas, which to a large extent serves as the major source of energy for numerous recovered fiber paper mills located in regions with limited available forest resources. The cost of producing electricity to drive paper machinery and generate heat for steam is increasing as world demand for fossil fuels increases. Additionally, recovered fiber paper mills are also significant producers of fibrous sludge and reject waste material that can contain high amounts of useful energy. Currently, a majority of these waste fractions is disposed of by landspreading, incineration, or landfill. Paper mills must also pay a gate fee to process their waste streams in this way and the result of this is a further increase in operating costs. This work has developed methods to utilize the waste fractions produced at recovered fiber paper mills for the onsite production of combined heat and power (CHP) using advanced thermal conversion methods (pyrolysis and gasification) that are well suited to relatively small scales of throughput. The electrical power created would either be used onsite to power the paper making process or alternatively exported to the national grid, and the surplus heat created could also be used onsite or exported to a local customer. The focus of this paper is to give a general overview of the project progress so far and will present the experimental results of the most successful thermal conversion trials carried out by this work to date. Application: The research provides both paper mills and energy providers with methodologies to condition their waste materials for conversion into useful energy. The research also opens up new markets for gasifier and pyrolysis equipment manufacturers and suppliers.