936 resultados para W280 Interactive and Electronic Design
Resumo:
We report inelastic light scattering studies on Ca(Fe0.97Co0.03)(2)As-2 in a wide spectral range of 120-5200 cm(-1) from 5 to 300 K, covering the tetragonal to orthorhombic structural transition as well as magnetic transition at T-sm similar to 160 K. The mode frequencies of two first-order Raman modes B-1g and E-g, both involving the displacement of Fe atoms, show a sharp increase below T-sm. Concomitantly, the linewidths of all the first-order Raman modes show anomalous broadening below T-sm, attributed to strong spin-phonon coupling. The high frequency modes observed between 400 and 1200 cm(-1) are attributed to electronic Raman scattering involving the crystal field levels of d-orbitals of Fe2+. The splitting between xz and yz d-orbital levels is shown to be similar to 25 meV, which increases as temperature decreases below T-sm. A broad Raman band observed at similar to 3200 cm(-1) is assigned to two-magnon excitation of the itinerant Fe 3d antiferromagnet.
Resumo:
Computing the maximum of sensor readings arises in several environmental, health, and industrial monitoring applications of wireless sensor networks (WSNs). We characterize the several novel design trade-offs that arise when green energy harvesting (EH) WSNs, which promise perpetual lifetimes, are deployed for this purpose. The nodes harvest renewable energy from the environment for communicating their readings to a fusion node, which then periodically estimates the maximum. For a randomized transmission schedule in which a pre-specified number of randomly selected nodes transmit in a sensor data collection round, we analyze the mean absolute error (MAE), which is defined as the mean of the absolute difference between the maximum and that estimated by the fusion node in each round. We optimize the transmit power and the number of scheduled nodes to minimize the MAE, both when the nodes have channel state information (CSI) and when they do not. Our results highlight how the optimal system operation depends on the EH rate, availability and cost of acquiring CSI, quantization, and size of the scheduled subset. Our analysis applies to a general class of sensor reading and EH random processes.
Resumo:
Energy storage devices based on sodium have been considered as an alternative to traditional lithium based systems because of the natural abundance, cost effectiveness and low environmental impact of sodium. Their synthesis, and crystal and electronic properties have been discussed, because of the importance of electronic conductivity in supercapacitors for high rate applications. The density of states of a mixed sodium transition metal phosphate (maricite, NaMn1/3Co1/3Ni1/3PO4) has been determined with the ab initio generalized gradient approximation (GGA)+Hubbard term (U) method. The computed results for the mixed maricite are compared with the band gap of the parent NaFePO4 and the electrochemical experimental results are in good agreement. A mixed sodium transition metal phosphate served as an active electrode material for a hybrid supercapacitor. The hybrid device (maricite versus carbon) in a nonaqueous electrolyte shows redox peaks in the cyclic voltammograms and asymmetric profiles in the charge-discharge curves while exhibiting a specific capacitance of 40 F g(-1) and these processes are found to be quasi-reversible. After long term cycling, the device exhibits excellent capacity retention (95%) and coulombic efficiency (92%). The presence of carbon and the nanocomposite morphology, identified through X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) studies, ensures the high rate capability while offering possibilities to develop new cathode materials for sodium hybrid devices.
Resumo:
GdxZn1-xO (x = 0, 0.02, 0.04 and 0.06) nanostructures have been synthesized using sol-gel technique and characterized to understand their structural and magnetic properties. X-ray diffraction (XRD) results show that Gd (0, 2, 4 and 6 %)-doped ZnO nanostructures crystallized in the wurtzite structure having space group C3(v) (P6(3)mc). Photoluminescence and Raman studies of Gd-doped ZnO powder show the formation of singly ionized oxygen vacancies. X-ray absorption spectroscopy reveals that Gd replaces the Zn atoms in the host lattice and maintains the crystal symmetry with slight lattice distortion. Gd L-3-edge spectra reveal charge transfer between Zn and Gd dopant ions. O K-edge spectra also depict the charge transfer through the oxygen bridge (Gd-O-Zn). Weak magnetic ordering is observed in all Gd-doped ZnO samples.
Resumo:
Solvent plays a key role in diverse physico-chemical and biological processes. Therefore, understanding solute-solvent interactions at the molecular level of detail is of utmost importance. A comprehensive solvatochromic analysis of benzophenone (Bzp) was carried out in various solvents using Raman and electronic spectroscopy, in conjunction with Density Functional Theory (DFT) calculations of supramolecular solute-solvent clusters generated using classical Molecular Dynamics Simulations (c-MDSs). The >C=O stretching frequency undergoes a bathochromic shift with solvent polarity. Interestingly, in protic solvents this peak appears as a doublet: c-MDS and ad hoc explicit solvent ab initio calculations suggest that the lower and higher frequency peaks are associated with the hydrogen bonded and dangling carbonyl group of Bzp, respectively. Additionally, the dangling carbonyl in methanol (MeOH) solvent is 4 cm(-1) blue-shifted relative to acetonitrile solvent, despite their similar dipolarity/polarizability. This suggests that the cybotactic region of the dangling carbonyl group in MeOH is very different from its bulk solvent structure. Therefore, we propose that this blue-shift of the dangling carbonyl originates in the hydrophobic solvation shell around it resulting from extended hydrogen bonding network of the protic solvents. Furthermore, the 1(1)n pi* (band I) and 1(1)pi pi* (band II) electronic transitions show a hypsochromic and bathochromic shift, respectively. In particular, these shifts in protic solvents are due to differences in their excited state-hydrogen bonding mechanisms. Additionally, a linear relationship is obtained for band I and the >C=O stretching frequency (cm(-1)), which suggests that the different excitation wavelengths in band I correspond to different solvation states. Therefore, we hypothesize that the variation in excitation wavelengths in band I could arise from different solvation states leading to varying solvation dynamics. This will have implications for ultrafast processes associated with electron-transfer, charge transfer, and also the photophysical aspects of excited states. (C) 2016 AIP Publishing LLC.
Resumo:
The properties of amorphous carbon (a-C) deposited using a filtered cathodic vacuum arc as a function of the ion energy and substrate temperature are reported. The sp3 fraction was found to strongly depend on the ion energy, giving a highly sp3 bonded a-C denoted as tetrahedral amorphous carbon (ta-C) at ion energies around 100 eV. The optical band gap was found to follow similar trends to other diamondlike carbon films, varying almost linearly with sp2 fraction. The dependence of the electronic properties are discussed in terms of models of the electronic structure of a-C. The structure of ta-C was also strongly dependent on the deposition temperature, changing sharply to sp2 above a transition temperature, T1, of ≈200°C. Furthermore, T1 was found to decrease with increasing ion energy. Most film properties, such as compressive stress and plasmon energy, were correlated to the sp3 fraction. However, the optical and electrical properties were found to undergo a more gradual transition with the deposition temperature which we attribute to the medium range order of sp2 sites. We attribute the variation in film properties with the deposition temperature to diffusion of interstitials to the surface above T1 due to thermal activation, leading to the relaxation of density in context of a growth model. © 1997 American Institute of Physics.