938 resultados para Voltage compensators
Resumo:
Low voltage distribution feeders with large numbers of single phase residential loads experience severe current unbalance that often causes voltage unbalance problems. The addition of intermittent generation and new loads in the form of roof top photovoltaic generation and electric vehicles makes these problems even more acute. In this paper, an intelligent dynamic residential load transfer scheme is proposed. Residential loads can be transferred from one phase to another phase to minimize the voltage unbalance along the feeder. Each house is supplied through a static transfer switch with three-phase input and single-phase output connection. The main controller, installed at the transformer will observe the power consumption in each load and determine which house(s) should be transferred from one phase to another in order to keep the voltage unbalance in the feeder at a minimum. The efficacy of the proposed load transfer scheme is verified through MATLAB and PSCAD/EMTDC simulations.
Resumo:
This paper addresses the voltage rise constraints that are initiated from increased renewable generation resources in low voltage distribution networks. In this paper, an approach which is able to mitigate these voltage rise constraints and allow for increased distributed generator penetration is presented. The proposed approach involves utilizing the distribution transformers static tap changer to reduce the distribution feeder voltage setpoint. The proposed approach is modeled on a generic low voltage distribution network using the PSS SINCAL© simulation software package and is also implemented in a real low voltage distribution network to verify its practicality. Results indicate that this approach can be implemented to mitigate the voltage rise constraint and increase small-scale embedded generator penetration in a high proportion of low voltage feeders while avoiding any substantial network costs.
Resumo:
Solutions to remedy the voltage disturbances have been mostly suggested only for industrial customers. However, not much research has been done on the impact of the voltage problems on residential facilities. This paper proposes a new method to reduce the effect of voltage dip and swell in smart grids equipped by communication systems. To reach this purpose, a voltage source inverter and the corresponding control system are employed. The behavior of a power system during voltage dip and swell are analyzed. The results demonstrate reasonable improvement in terms of voltage dip and swell mitigation. All simulations are implemented in MATLAB/Simulink environment.
Resumo:
Voltage drop at network peak hours is a significant power quality problem in Low Voltage (LV) distribution feeders. Recently, voltage rise due to high penetration of Photovoltaic cells (PVs) has been creating a new power quality problem during noon periods. In this paper, a voltage control strategy is proposed for the household installed PVs to regulate the voltage along the LV feeder. For this purpose, each PV is controlled to exchange reactive power with the grid. A droop control method is utilized to coordinate the reactive power exchange of each PV. The proposed method is a decentralized local voltage support since it is based on only local measurements and does not require any communication with other PVs. The required converter and filter structure and control algorithms are proposed to ensure the dynamic performance of the system. The study focuses on 3-phase PVs. The network is studied at network peak and off-peak periods, separately. The efficacy of the proposed voltage support concept is verified through numerical and dynamic analyses with MATLAB and PSCAD/EMTDC.
Resumo:
A novel intelligent online demand side management system is proposed for peak load management. The method also regulates the network voltage, balances the power in three phases and coordinates the battery storage discharge within the network. This method uses low cost controllers with low bandwidth two-way communication installed in costumers' premises and at distribution transformers to manage the peak load while maximizing customer satisfaction. A multi-objective decision making process is proposed to select the load(s) to be delayed or controlled. The efficacy of the proposed control system is verified through an event-based developed simulation in Matlab.
Resumo:
In order to dynamically reduce voltage unbalance along a low voltage distribution feeder, a smart residential load transfer system is discussed. In this scheme, residential loads can be transferred from one phase to another to minimize the voltage unbalance along the feeder. Each house is supplied through a static transfer switch and a controller. The master controller, installed at the transformer, observes the power consumption in each house and will determine which house(s) should be transferred from an initially connected phase to another in order to keep the voltage unbalance minimum. The performance of the smart load transfer scheme is demonstrated by simulations.
Resumo:
A novel intelligent online demand management system is discussed in this chapter for peak load management in low voltage residential distribution networks based on the smart grid concept. The discussed system also regulates the network voltage, balances the power in three phases and coordinates the energy storage within the network. This method uses low cost controllers, with two-way communication interfaces, installed in costumers’ premises and at distribution transformers to manage the peak load while maximizing customer satisfaction. A multi-objective decision making process is proposed to select the load(s) to be delayed or controlled. The efficacy of the proposed control system is verified by a MATLAB-based simulation which includes detailed modeling of residential loads and the network.
Resumo:
Large penetration of rooftop PVs has resulted in unacceptable voltage profile in many residential distribution feeders. Limiting real power injection from PVs to alleviate over voltage problem is not feasible due to loss of green power and hence corresponding revenue loss. Reactive capability of the PV inverter can be a solution to address over voltage and voltage dip problems to some extent. This paper proposes an algorithm to utilize reactive capability of PV inverters and investigate their effectiveness for voltage improvement based on R/X ratio of the feeder. The length and loading level of the feeder for a particular R/X ratio to have acceptable voltage profile is also investigated. This can be useful for suburban design and residential distribution planning. Furthermore, coordination among different PVs using residential smart meters via a substation based controller is also proposed.
Resumo:
Integration of rooftop PVs and increasing peak demand in the residential distribution networks has resulted in unacceptable voltage profile. Curtailing PV generation to alleviate overvoltage problem and making regular network investment to cater peak demand is not always feasible. Reactive capability of the PV inverter can be a solution to address voltage dip and over voltage problems to some extent. This paper proposes an algorithm to utilize reactive capability of PV inverters and investigate their effectiveness on feeder length and R/X ratio of the line. Feeder loading level for a particular R/X ratio to have acceptable voltage profile is also investigated. Furthermore, the need of appropriate feeder distances and R/X ratio for acceptable voltage profile, which can be useful for suburban design and distribution planning, is explored.
Resumo:
Installation of domestic rooftop photovoltaic cells (PVs) is increasing due to feed–in tariff and motivation driven by environmental concerns. Even though the increase in the PV installation is gradual, their locations and ratings are often random. Therefore, such single–phase bi–directional power flow caused by the residential customers can have adverse effect on the voltage imbalance of a three–phase distribution network. In this chapter, a voltage imbalance sensitivity analysis and stochastic evaluation are carried out based on the ratings and locations of single–phase grid–connected rooftop PVs in a residential low voltage distribution network. The stochastic evaluation, based on Monte Carlo method, predicts a failure index of non–standard voltage imbalance in the network in presence of PVs. Later, the application of series and parallel custom power devices are investigated to improve voltage imbalance problem in these feeders. In this regard, first, the effectiveness of these two custom power devices is demonstrated vis–à–vis the voltage imbalance reduction in feeders containing rooftop PVs. Their effectiveness is investigated from the installation location and rating points of view. Later, a Monte Carlo based stochastic analysis is utilized to investigate their efficacy for different uncertainties of load and PV rating and location in the network. This is followed by demonstrating the dynamic feasibility and stability issues of applying these devices in the network.
Resumo:
Rapidly increasing electricity demands and capacity shortage of transmission and distribution facilities are the main driving forces for the growth of Distributed Generation (DG) integration in power grids. One of the reasons for choosing a DG is its ability to support voltage in a distribution system. Selection of effective DG characteristics and DG parameters is a significant concern of distribution system planners to obtain maximum potential benefits from the DG unit. This paper addresses the issue of improving the network voltage profile in distribution systems by installing a DG of the most suitable size, at a suitable location. An analytical approach is developed based on algebraic equations for uniformly distributed loads to determine the optimal operation, size and location of the DG in order to achieve required levels of network voltage. The developed method is simple to use for conceptual design and analysis of distribution system expansion with a DG and suitable for a quick estimation of DG parameters (such as optimal operating angle, size and location of a DG system) in a radial network. A practical network is used to verify the proposed technique and test results are presented.
Resumo:
High power, high frequency pulsed electric fields known as pulsed power (PP) has been applied recently in biology and medicine. However, little attention has been paid to investigate the application of pulse power in musculoskeletal system and its possible effect on functional behavior and biomechanical properties of bone tissue. This paper presents the first research investigating whether or not PP can be applied safely on bone tissue as a stimuli and what will be the possible effect of these signals on the characteristics of cortical bone by comparing the mechanical properties of this type of bone pre and post expose to PP and in comparison with the control samples. A positive buck‑boost converter was applied to generate adjustable high voltage, high frequency pulses (up to 500 V and 10 kHz). The functional behavior of bone in response to pulse power excitation was elucidated by applying compressive loading until failure. The stiffness, failure stress (strength) and the total fracture energy (bone toughness) were determined as a measure of the main bone characteristics. Furthermore, an ultrasonic technique was applied to determine and comprise bone elasticity before and after pulse power stimulation. The elastic property of cortical bone samples appeared to remain unchanged following exposure to pulse power excitation for all three orthogonal directions obtained from ultrasonic technique and similarly from the compression test. Nevertheless, the compressive strength and toughness of bone samples were increased when they were exposed to 66 h of high power pulsed electromagnetic field compared to the control samples. As the toughness and the strength of the cortical bone tissue are directly associated with the quality and integrity of the collagen matrix whereas its stiffness is primarily related to bone mineral content these overall results may address that although, the pulse power stimulation can influence the arrangement or the quality of the collagen network causing the bone strength and toughness augmentation, it apparently did not affect the mineral phase of the cortical bone material. The results also confirmed that the indirect application of high power pulsed electric field at 500 V and 10 kHz through capacitive coupling method was safe and did not destroy the bone tissue construction.
Resumo:
Unbalanced or non-linear loads result in distorted stator currents and electromagnetic torque pulsations in stand-alone doubly fed induction generators (DFIGs). This study proposes the use of a proportional-integral repetitive control (PIRC) scheme so as to mitigate the levels of harmonic and unbalance at the stator terminals of the DFIG. The PIRC is structurally simpler and requires much less computation than existing methods. Analysis of the PIRC operation and the methodology to determine the control parameters is included. Simulation study as well as laboratory test measurements demonstrate clearly the effectiveness of the proposed PIRC control scheme.
Resumo:
This thesis advances the understanding of the impact of stigma on property values. A case study in Wellington, New Zealand, enabled hedonic modelling and an empirical analysis to determine the impact of the stigma from the high voltage transmission line structure and how long the stigma remained after removal. The results reveal a substantial difference between the discount applied to individual properties while the structure is in place, as compared to the overall increase in neighbourhood value once the structure, which created the stigma, is removed.
Resumo:
Voltage rise is the main issue which limits the capacity of Low Voltage (LV) network to accommodate more Renewable Energy (RE) sources. In addition, voltage drop at peak load period is a significant power quality concern. This paper proposes a new robust voltage support strategy based on distributed coordination of multiple distribution static synchronous compensators (DSTATCOMs). The study focuses on LV networks with PV as the RE source for customers. The proposed approach applied to a typical LV network and its advantages are shown comparing with other voltage control strategies.