906 resultados para Vitis vinifera, Microarray, Fruit development
Resumo:
Diplodia corticola is regarded as the most virulent fungus involved in cork oak decline, being able to infect not only Quercus species (mainly Q. suber and Q. ilex), but also grapevines (Vitis vinifera) and eucalypts (Eucalyptus sp.). This endophytic fungus is also a pathogen whose virulence usually manifests with the onset of plant stress. Considering that the infection normally culminates in host death, there is a growing ecologic and socio-economic concern about D. corticola propagation. The molecular mechanisms of infection are hitherto largely unknown. Accordingly, the aim of this study was to unveil potential virulence effectors implicated in D. corticola infection. This knowledge is fundamental to outline the molecular framework that permits the fungal invasion and proliferation in plant hosts, causing disease. Since the effectors deployed are mostly proteins, we adopted a proteomic approach. We performed in planta pathogenicity tests to select two D. corticola strains with distinct virulence degrees for our studies. Like other filamentous fungi D. corticola secretes protein at low concentrations in vitro in the presence of high levels of polysaccharides, two characteristics that hamper the fungal secretome analysis. Therefore, we first compared several methods of extracellular protein extraction to assess their performance and compatibility with 1D and 2D electrophoretic separation. TCA-Acetone and TCA-phenol protein precipitation were the most efficient methods and the former was adopted for further studies. The proteins were extracted and separated by 2D-PAGE, proteins were digested with trypsin and the resulting peptides were further analysed by MS/MS. Their identification was performed by de novo sequencing and/or MASCOT search. We were able to identify 80 extracellular and 162 intracellular proteins, a milestone for the Botryosphaeriaceae family that contains only one member with the proteome characterized. We also performed an extensive comparative 2D gel analysis to highlight the differentially expressed proteins during the host mimicry. Moreover, we compared the protein profiles of the two strains with different degrees of virulence. In short, we characterized for the first time the secretome and proteome of D. corticola. The obtained results contribute to the elucidation of some aspects of the biology of the fungus. The avirulent strain contains an assortment of proteins that facilitate the adaptation to diverse substrates and the identified proteins suggest that the fungus degrades the host tissues through Fenton reactions. On the other hand, the virulent strain seems to have adapted its secretome to the host characteristics. Furthermore, the results indicate that this strain metabolizes aminobutyric acid, a molecule that might be the triggering factor of the transition from a latent to a pathogenic state. Lastly, the secretome includes potential pathogenicity effectors, such as deuterolysin (peptidase M35) and cerato-platanin, proteins that might play an active role in the phytopathogenic lifestyle of the fungus. Overall, our results suggest that D. corticola has a hemibiotrophic lifestyle, switching from a biotrophic to a necrotrophic interaction after plant physiologic disturbances.This understanding is essential for further development of effective plant protection measures.
Resumo:
Grapevine is one of the most cultivated fruit crop worldwide with Vitis vinifera being the species with the highest economical importance due to the high quality standards of its berries. Nonetheless, it is also the most susceptible Vitis species to fungal pathogens. Among others, relevant fungal diseases currently threatening grapevine cultures are powdery mildew, caused by Erysiphe necator, and esca, a disease complex comprised of several fungi in which Phaeomoniella chlamydospora and Phaeoacremonium aleophilum participate.(...)
Resumo:
Perdas significativas ocorrem durante o armazenamento e a comercialização de uvas de mesa devido, principalmente, à ocorrência do mofo cinzento (Botrytis cinerea Pers.:Fr.) e, para o controle de patógenos emprega-se, geralmente, o dióxido de enxofre (SO2). Diante da restrição crescente ao uso de produtos químicos em pós-colheita, tem ocorrido considerável interesse em métodos alternativos de controle. Este trabalho teve como principal objetivo avaliar os efeitos da quitosana, na proteção pós-colheita de uva 'Itália' contra B. cinerea. In vivo, avaliou-se o efeito direto e indireto da quitosana pelo tratamento dos cachos de uva, antes e após a inoculação com o patógeno. Utilizou-se quitosana nas concentrações de 0,00; 0,25; 0,50; 1,00; 1,50 e 2,00 % (v/v). Para inoculação, em 10 bagas de cada cacho de uva foram feitos ferimentos de ±2 mm de profundidade, procedendo-se em seguida, a aspersão da suspensão de conídios (±10(5) conídios.mL-1) de B. cinerea. Após os tratamentos, os cachos foram mantidos a 25±1 °C / 80-90 % UR e avaliados diariamente quanto à incidência e severidade da podridão. Avaliações in vitro do efeito do produto sobre o patógeno também foram realizadas analisando-se o crescimento micelial e a germinação dos conídios de B. cinerea. A solução de quitosana, nas concentrações de 1,5 e 2,0 % (v/v), quando empregada após a inoculação com B cinerea, reduziu significativamente o índice de doença no entanto, quando os cachos foram tratados antes da inoculação, não houve efeito significativo do tratamento sobre o desenvolvimento da doença. Nos ensaios in vitro, a solução de quitosana, nas maiores concentrações, suprimiu o crescimento micelial do patógeno e retardou a germinação dos conídios.
Resumo:
A chemical and bioactive quality evaluation of phytochemicals content of 10 eggplant lines and three allied species (S. sodomaeum, S. aethiopicum and S. integrifolium) was performed. The eggplant lines were divided into the two subgroups of delphinidin-3-rutinoside (D3R) and nasunin (NAS) typologies, on the basis of the anthocyanin detected in their fruit skin. The allied species had higher glycoalkaloids content, lower soluble solids and PPO activity and absence of anthocyanins compared to the eggplant lines; S. sodomaeum stood out for high phenols content. Orthogonal contrast revealed a higher sugar content and low PPO activity in NAS- compared to D3R-typologies, whereas higher chlorogenic acid and anthocyanin contents were present in D3R-typologies. The main effect of the ripening was a decrease in phenols and in the PPO activity, not evidenced in S. sodomaeum, and an increase of glycoalkaloids in overripe fruits.A good relationship was found between superoxide anion scavenging capacity and chlorogenic acid. This study highlighted the pattern of accumulation, also evidencing variations, of several phytochemicals during the eggplant fruit development and ripening.
Resumo:
Caesalpinia echinata and C ferrea var. ferrea have different seed behaviours and seed and fruit types. Comparison of the seed ontogeny and anatomy partly explained the differences in seed behaviour between these two species of Brazilian legumes; some differences were also related to fruit development. The seed coat in C. ferrea consisted of two layers of osteosclereids, as well as macrosclereids and fibres, to form a typical legume seed coat, whereas C. echinata had only macrosclereids and fibres. In C. echinata, the developing seed coat had paracytic stomata, a feature rarely found in legume seeds. These seed coat features may account for the low longevity of C. echinata seeds. The embryogeny was similar in both species, with no differences in the relationship between embryo growth and seed growth. The seeds of both species behaved as typical endospermic seeds, despite their different morphological classification (exendospermic orthodox seeds were described for C. echinata and endospermic orthodox seeds for C. ferrea). Embryo growth in C. ferrea accelerated when the sclerenchyma of the pericarp was developing, whereas embryonic growth in C. echinata was associated with the conclusion of spine and secretory reservoir development in the pericarp. Other features observed included an endothelial layer that secreted mucilage in both species, a nucellar summit, which grew up into the micropyle, and a placental obturator that connected the ovarian tissue to the ovule in C. ferrea. (C) 2004 the Linnean Society of London.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Xylella fastidiosa causes citrus variegated chlorosis (CVC) disease in Brazil and Pierce's disease of grapevines in the United States. Both of these diseases cause significant production problems in the respective industries. The recent establishment of the glassy-winged sharpshooter in California has radically increased the threat posed by Pierces disease to California viticulture. Populations of this insect reach very high levels in citrus groves in California and move from the orchards into the vineyards, where they acquire inoculum and spread Pierce's disease in the vineyards. Here we show that strains of X. fastidiosa isolated from diseased citrus and coffee in Brazil can incite symptoms of Pierce's disease after mechanical inoculation into seven commercial Vitis vinifera varieties grown in Brazil and California. Thus, any future introduction of the CVC strains of X. fastidiosa into the United States would pose a threat to both the sweet orange and grapevine industries. Previous work has clearly shown that the strains of X. fastidiosa isolated from Pierce's disease- and CVC-affected plants are the most distantly related of all strains in the diverse taxon X. fastidiosa. The ability of citrus strains of X. fastidiosa to incite disease in grapevine is therefore surprising and creates an experimental system with which to dissect mechanisms used by X.,fastidiosa in plant colonization and disease development using the full genome sequence data that has recently become available for both the citrus and grapevine strains of this pathogen.
Resumo:
This work aimed to study aspects related to vegetative and productive development of plants and characteristics and chemical components of bunches of six seedless grape varieties at environmental conditions of São Francisco river's valley, Northeastern Brazil. The experiment was carried out during 1997 and 1998. The varieties tested were grafted on IAC 572 ('Jales') rootstock. The experimental model utilized was totally randomized, and with parcels subdivided into different production cycles. The results showed significative differences among varieties at different pruning times. The average weight of bunches varied from 164.8 g for 'Marroo Seedless' and 203.5 g for 'Beauty Seedless'. The average diameter of berries was superior to 15.7 mm for all of the varieties. The total soluble solids varied from 14.05°Brix in 'Canner' to 19.6°Brix in 'Venus'. The total titratable acidity (ATT) was lower than 0.91 g tartaric acid/100 mL of juice. The ratio SST/ATT varied from 19.05 in 'Beauty Seedless' to 28.57 in 'Vênus'. 'Vênus' and 'Marroo Seedless' were the most productive varieties, with the average annual production of 24 ton/ha and 20 ton/ha, respectively.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Trials were carried out in Juazeiro, Bahia State, Brazil, aiming to test plant regulators composed by gibberellin, cytokine and auxin effects on chemical quality of Superior Seedless grape berries. The first trial studied the effects of Stimulate (R) (bio regulator) and X-Cyte (R) (cytokine) associated to a new gibberellin formulation (N-Large (R)) and associated to Pro-Gibb (R), which is a product used as source of gibberellin. Products were sprayed at berries development phase (18, 21, 51 and 56 days after spur-pruning). Treatments were: T1: Pro-Gibb (R); T2: Stimulate (R) (Dose 1); T3: Stimulate (R) (Dose 2); T4: Stimulate (R) (Dose 3); T5: Pro-Gibb (R) + X-Cyte (R) (Low Dose - DB); T6: Pro-Gibb (R) + X-Cyte (R) (Intermediate Dose - DM); T7: Pro-Gibb (R) + X-Cyte (R) (High Dose - DA); T8: N-Large (R); T9: N-Large (R) + X-Cyte (R) (DB); T10: N-Large (R) + X-Cyte (R) (DM); T11: N-Large (R) + X-Cyte (R) (DA). The second trial aimed to assess the effect of the new gibberellin formulation (N-Large (R)) associated or not with cytokine (X-Cyte (R)) also sprayed straight over the bunches at berries development phase (17, 55 e 66 days after spur-pruning). Treatments were: T1: Pro-Gibb (R) - blank; T2: N-Large (R) (DB); T3: N-Large (R) (DM); T4: N-Large (R) (DA); T5: N-Large (R) (DB) + X-Cyte (R) (DB); T6: N-Large (R) (DB) + X-Cyte (R) (DM); T7: N-Large (R) (DB) + X-Cyte (R) (DA); T8: N-Large (R) (DM) + X-Cyte (R) (DB); T9: N-Large (R) (DM) + X-Cyte (R) (DM); T10: N-Large (R) (DM) + X-Cyte (R) (DA); T11: N-Large (R) (DA) + X-Cyte (R) (DB); T12: N-Large (R) (DA) + X-Cyte (R) (DM); T13: N-Large (R) (DA) + X-Cyte (R) (DA). Experimental design was random blocks with four repetitions with each repetition/parcel having three useful plants in the same row. At harvest, when bunches average had soluble solids over 15 degrees Brix, berries were collected for soluble solids, pH, titratable acidity analysis as well as (SS/AT) ratio calculation. In both trials, plant regulators evaluated did not provide significant changes on chemical quality of 'Superior Seedless' grape berries. Therefore, the lack of differences on response between the commercially used product (Pro-Gibb (R)) and the other products tested (Stimulate (R), X-Cyte (R) e N-Large (R)) prove the last as promising for the ` Superior Seedless' grape cultivation, leaving a larger range of alternative for grape farmers in the Sao Francisco Valley, Bahia.
Resumo:
The almost complete absence or misdistribution of water as a natural resource frequently constitute a limiting factor for plant growth and development in the semi-arid northeastern Brazil. In this context, the use of appropriate irrigation techniques is an essential and indispensable factor for proper functioning of the primary and secondary metabolisms in plants. This study aimed to assess the metabolism of the Syrah grapevine in the semi-arid northeastern Brazil, by using three irrigation strategies (controlled deficit irrigation [CDI], deficit irrigation [DI], and full irrigation [FI]). The research was conducted at Embrapa Semiarid (Embrapa-Brazilian Agricultural Research Corporation), Experimental Field of Bebedouro, municipality of Petrolina, state of Pernambuco, Brazil. The statistical design was randomized blocks, with a 3 x 6 factorial scheme. Six samplings were performed throughout the experiment cycle at 54, 60, 73, 87, 101, and 115 days after pruning (DAP). We analyzed the total soluble sugars, reducing sugars, total soluble protein, and invertase activity. Analysis of variance and the F test were performed for all analyzed variables. The means were compared using the Tukey test at 5% significance. At the end of the experiment cycle, DI was found to increase the average acid invertase activity in the plant cell wall. Further, by the end of the experiment cycle, the total soluble sugars and reducing sugars increased in all plants in the three irrigation strategies. Thus, we conclude that it is possible to reduce water consumption in vineyards of the semi-arid northeastern Brazil, without significantly affecting the protein and sugar metabolisms in the plants.
Resumo:
Endogenous levels of IAA, ABA and four types of CKs were analyzed in zygotic and indirect (ISE) and direct somatic embryogenesis of Acca sellowiana. Zygotic and somatic embryos at different developmental stages were sampled for morphological and hormonal analysis. Both embryo types showed substantial asymmetry in hormone levels. Zygotic embryos displayed a conspicuous peak of IAA in early developmental stages. The results outlined the hormonal variations occurring during zygotic and somatic embryogenesis regarding the timing, nature and hormonal status involved in both processes. The short transient pulse of IAA observed on the 3rd day in culture was suggested to be involved with the signaling for the induction of somatic embryogenesis. Fertilized ovule development was associated with increased IAA levels 21-24 days after pollination, followed by a sharp decrease in the cotyledonary stage, both in zygotic and somatic embryos. There was a prominent increase in ABA levels in cultures which generated ISE 24-30 days after pollination, a period that corresponds to the heart and torpedo stages. The levels of total CKs (Z, [9R]Z, iP and [9R]iP) were also always higher in zygotic than in somatic embryogenesis. While zygotic embryogenesis was dominated by the presence of zeatin, the somatic process, contrarily, was characterized by a large variation of the other cytokinin forms and amounts studied. The above results, when taken together, could be related to the previously observed high frequency formation of anomalous somatic embryos formed in A. sellowiana, as well as to their low germination ability.
Resumo:
The objective of this work was to evaluate rootstock influence on agronomical, ecophysiological and qualitative characteristics of 'Syrah' vines managed by double pruning. Grapevines were grafted onto 'SO4', '110 Richter' and '1103 Paulsen' rootstocks and trained in vertical shoot position, with no irrigation. Ecophysiological characteristics, yield and composition of ripe grapes were evaluated in three crop seasons (2007, 2008 and 2010). Rootstocks did not affect pre-dawn water potential, with values close to -0.2 MPa, indicating that there was no soil water deficit at the end of ripening (June). There was also no significant effect of rootstocks on yield. The rootstock '1103 Paulsen' induced lower vegetative growth, lower photosynthetic rate and the best results for berry maturation for crop seasons with lower amount of rainfall. The rootstocks '110 Richter' and 'SO4' showed higher vigor under the meteorological conditions of 2010 and the greatest photosynthetic rates in the same period. Meteorological conditions significantly affected technological and phenolic ripeness, with best results observed in drought years. The '1103 Paulsen' rootstock provides better balance between vigor and yield, increasing grape quality.
Resumo:
Starch is the main form in which plants store carbohydrates reserves, both in terms of amounts and distribution among different plant species. Carbohydrates are direct products of photosynthetic activity, and it is well know that yield efficiency and production are directly correlated to the amount of carbohydrates synthesized and how these are distributed among vegetative and reproductive organs. Nowadays, in pear trees, due to the modernization of orchards, through the introduction of new rootstocks and the development of new training systems, the understanding and the development of new approaches regarding the distribution and storage of carbohydrates, are required. The objective of this research work was to study the behavior of carbohydrate reserves, mainly starch, in different pear tree organs and tissues: i.e., fruits, leaves, woody organs, roots and flower buds, at different physiological stages during the season. Starch in fruit is accumulated at early stages, and reached a maximum concentration during the middle phase of fruit development; after that, its degradation begins with a rise in soluble carbohydrates. Moreover, relationships between fruit starch degradation and different fruit traits, soluble sugars and organic acids were established. In woody organs and roots, an interconversion between starch and soluble carbohydrates was observed during the dormancy period that confirms its main function in supporting the growth and development of new tissues during the following spring. Factors as training systems, rootstocks, types of bearing wood, and their position on the canopy, influenced the concentrations of starch and soluble carbohydrates at different sampling dates. Also, environmental conditions and cultural practices must be considered to better explain these results. Thus, a deeper understanding of the dynamics of carbohydrates reserves within the plant could provide relevant information to improve several management practices to increase crop yield efficiency.
Resumo:
En las últimas décadas, la actividad vitivinícola de la provincia de Mendoza (Argentina) apunta a mejorar la calidad de sus uvas y sus vinos, para optimizar las condiciones de competencia en el plano internacional. En Mendoza, desde 1999 la Fundación Instituto de Desarrollo Rural (IDR) se propuso determinar el comportamiento agronómico y la caracterización fenológica de las variedades de vid de mayor utilización en la elaboración de vinos en todas las zonas productivas de la provincia. A partir de 2005 y mediante un convenio específico con la Facultad de Ciencias Agrarias, se realizaron, en esta Institución, los análisis físicos y químicos con el objetivo de describir los mostos de variedades viníferas blancas y tintas. Este proceso permitió generar una herramienta para el desarrollo de estrategias de optimización de calidad de los productos. Se estudiaron las variedades Chardonnay, Cabernet Sauvignon, Merlot, Syrah, Malbec y Bonarda y se realizó una caracterización zonal empleando los Índices de Tonietto (IF), de Winkler (IW) y de Huglin (IH). Los resultados de los análisis físico-químicos de los mostos de variedades tintas durante las cosechas 2005, 2006 y 2007 muestran que existe correlación inversa entre los índices climáticos estudiados y los contenidos de antocianos y polifenoles. Se observa también que las variedades de ciclo largo, como Bonarda, encuentran limitantes importantes en zonas frías para alcanzar contenidos de azúcar comercialmente aceptables (mínimo 220 g/L).