964 resultados para Visible Luminescence
Resumo:
In the current climate of accountability, political manoeuvring, changing curriculum, increasingly diverse student cohorts and community expectations, teachers, more than ever, need to develop the skills and abilities to be reflective and reflexive practitioners. This study examines national teacher professional standards from Australia and the UK to identify the extent to which reflexivity is embedded in key policy documents that are intended to guide the work of teachers in those countries. Using Margaret Archer's theories of reflexivity and morphogenesis, and methods of critical discourse analysis, we argue that these blueprints for teachers’ work exclude reflexivity as an essential and overarching discourse of teacher professionalism.
Resumo:
One of the greatest challenges for the study of photocatalysts is to devise new catalysts that possess high activity under visible light illumination. This would allow the use of an abundant and green energy source, sunlight, to drive chemical reactions. Gold nanoparticles strongly absorb both visible light and UV light. It is therefore possible to drive chemical reactions utilising a significant fraction of full sunlight spectrum. Here we prepared gold nanoparticles supported on various oxide powders, and reported a new finding that gold nanoparticles on oxide supports exhibit significant activity for the oxidation of formaldehyde and methanol in the air at ambient temperature, when illuminated with visible light. We suggested that visible light can greatly enhance local electromagnetic fields and heat gold nanoparticles due to surface plasmon resonance effect which provides activation energy for the oxidation of organic molecules. Moreover, the nature of the oxide support has an important influence on the activity of the gold nanoparticles. The finding reveals the possibility to drive chemical reactions with sunlight on gold nanoparticles at ambient temperature, highlighting a new direction for research on visible light photocatalysts. Gold nanoparticles supported on oxides also exhibit significant dye oxidation activity under visible light irradiation in aqueous solution at ambient temperature. Turnover frequencies of the supported gold nanoparticles for the dye degradation are much higher than titania based photocatalysts under both visible and UV light. These gold photocatalysts can also catalyse phenol degradation as well as selective oxidation of benzyl alcohol under UV light. The reaction mechanism for these photocatalytic oxidations was studied. Gold nanoparticles exhibit photocatalytic activity due to visible light heating gold electrons in 6sp band, while the UV absorption results in electron holes in gold 5d band to oxidise organic molecules. Silver nanoparticles also exhibit considerable visible light and UV light absorption due to surface plasmon resonance effect and the interband transition of 4d electrons to the 5sp band, respectively. Therefore, silver nanoparticles are potentially photocatalysts that utilise the solar spectrum effectively. Here we reported that silver nanoparticles at room temperature can be used to drive chemical reactions when illuminated with light throughout the solar spectrum. The significant activities for dye degradation by silver nanoparticles on oxide supports are even better than those by semiconductor photocatalysts. Moreover, silver photocatalysts also can degrade phenol and drive the oxidation of benzyl alcohol to benzaldehyde under UV light. We suggested that surface plasmon resonance effect and interband transition of silver nanoparticles can activate organic molecule oxidations under light illumination.
Resumo:
Gold nanoparticles supported on CeO2 were found to be efficient photocatalysts for three selective reductions of organic compounds at ambient temperatures, under irradiation of visible light; their reduction ability can be tuned by manipulating the irradiation wavelength.
Resumo:
Filtration membrane technology has already been employed to remove various organic effluents produced from the textile, paper, plastic, leather, food and mineral processing industries. To improve membrane efficiency and alleviate membrane fouling, an integrated approach is adopted that combines membrane filtration and photocatalysis technology. In this study, alumina nanofiber (AF) membranes with pore size of about 10 nm (determined by the liquid-liquid displacement method) have been synthesized through an in situ hydrothermal reaction, which permitted a large flux and achieved high selectivity. Silver nanoparticles (Ag NPs) are subsequently doped on the nanofibers of the membranes. Silver nanoparticles can strongly absorb visible light due to the surface plasmon resonance (SPR) effect, and thus induce photocatalytic degradation of organic dyes, including anionic, cationic and neutral dyes, under visible light irradiation. In this integrated system, the dyes are retained on the membrane surface, their concentration in the vicinity of the Ag NPs are high and thus can be efficiently decomposed. Meanwhile, the usual flux deterioration caused by the accumulation of the filtered dyes in the passage pores can be avoided. For example, when an aqueous solution containing methylene blue is processed using an integrated membrane, a large flux of 200 L m-2 h-1 and a stable permeating selectivity of 85% were achieved. The combined photocatalysis and filtration function leads to superior performance of the integrated membranes, which have a potential to be used for the removal of organic pollutants in drinking water.
Resumo:
With new photocatalysts of gold nanoparticles supported on zeolite supports (Au/zeolite), oxidation of benzyl alcohol and its derivatives into the corresponding aldehydes can proceed well with a high selectivity (99%) under visible light irradiation at ambient temperature. Au/zeolite photocatalysts were characterized by UV/Vis, XPS, TEM, XRD, EDS, BET, IR, and Raman techniques. The Surface Plasmon Resonance (SPR) effect of gold nanoparticles, the adsorption capability of zeolite supports, and the molecular polarities of aromatic alcohols were demonstrated to have an essential correlation with the photocatalytic performances. In addition, the effects of light intensity, wavelength range, and the role of molecular oxygen were investigated in detail. The kinetic study indicated that the visible light irradiation required much less apparent activation energy for photooxidation compared with thermal reaction. Based on the characterization data and the photocatalytic performances, we proposed a possible photooxidation mechanism.
Resumo:
A ground-based tracking camera and co-aligned slit-less spectrograph were used to measure the spectral signature of visible radiation emitted from the Hayabusa capsule as it entered into the Earth's atmosphere in June 2010. Good quality spectra were obtained that showed the presence of radiation from the heat shield of the vehicle and the shock-heated air in front of the vehicle. An analysis of the black body nature of the radiation concluded that the peak average temperature of the surface was about (3100±100) K.
Resumo:
The chief challenge facing persistent robotic navigation using vision sensors is the recognition of previously visited locations under different lighting and illumination conditions. The majority of successful approaches to outdoor robot navigation use active sensors such as LIDAR, but the associated weight and power draw of these systems makes them unsuitable for widespread deployment on mobile robots. In this paper we investigate methods to combine representations for visible and long-wave infrared (LWIR) thermal images with time information to combat the time-of-day-based limitations of each sensing modality. We calculate appearance-based match likelihoods using the state-of-the-art FAB-MAP [1] algorithm to analyse loop closure detection reliability across different times of day. We present preliminary results on a dataset of 10 successive traverses of a combined urban-parkland environment, recorded in 2-hour intervals from before dawn to after dusk. Improved location recognition throughout an entire day is demonstrated using the combined system compared with methods which use visible or thermal sensing alone.
Resumo:
Using interview data on LGBT young people’s policing experiences, I argue policing and security works as a program of government (Dean 1999; Foucault 1991; Rose 1999) that constrains the visibilities of diverse sexuality and gender in public spaces. While young people narrated police actions as discriminatory, the interactions were complex and multi‐faceted with police and security working to subtly constrain the public visibilities of ‘queerness’. Same sex affection, for instance, was visibly yet unverifiably (Mason 2002) regulated by police as a method of governing the boundaries of proper gender and sexuality in public. The paper concludes by noting how the visibility of police interactions with LGBT young people demonstrates to the public that public spaces are, and should remain, heterosexual spaces.
Resumo:
Photocatalytic synthesis using visible light is a desirable chemical process because of its potential to utilize sunlight. Supported gold nanoparticles (Au-NPs) were found to be efficient photocatalysts and the effects of the supports were identified including CeO2, TiO2, ZrO2, Al2O3, and zeolite Y. In particular Au/CeO2 exhibited the high catalytic activity to reduce nitroaromatics to azo compounds, hydrogenate azobenzene to hydroazobenzene, reduce ketones to alcohols, and deoxygenate epoxides to alkenes at ambient temperatures, under irradiation of visible light (or simulated sunlight). The reac-tive efficiency depends on two primary factors: one is the light adsorption of catalysts and another is the driving ability of catalysts corresponding to the reactants. The light absorption by Au-NPs is due to surface plasmon resonance effect or inter-band electron transition; this is related to the reduction ability of the photocatalysts. Irradiation with shorter wavelengths can excite the conduction electrons in Au-NPs to higher energy levels and as a result, induce reduction with more negative reduction potentials. It is known when irradiated with light the Au-NPs can abstract hydrogen from isopropanol forming Au-H species on the Au-NP surface. Hence, we proposed that the active Au-H species will react with the N=O, N=N, C=O double bonds or epoxide bonds, which are weakened by the interaction with the excited electrons in the Au-NPs, and yield the final reductive products. The reacting power of the Au-H species depends on the energy of the excited electrons in Au-NPs: the higher the electronic energy, the stronger the reduction ability of the Au-H species. This finding demonstrates that we can tune the reduction ability of the photocatalysts by manipulating the irradiation wavelength.
Resumo:
Opening up a band gap and finding a suitable substrate material are two big challenges for building graphene-based nanodevices. Using state-of-the-art hybrid density functional theory incorporating long range dispersion corrections, we investigate the interface between optically active graphitic carbon nitride (g-C3N4) and electronically active graphene. We find an inhomogeneous planar substrate (g-C3N4) promotes electronrich and hole-rich regions, i.e., forming a well-defined electron−hole puddle, on the supported graphene layer. The composite displays significant charge transfer from graphene to the g-C3N4 substrate, which alters the electronic properties of both components. In particular, the strong electronic coupling at the graphene/g-C3N4 interface opens a 70 meV gap in g-C3N4-supported graphene, a feature that can potentially allow overcoming the graphene’s band gap hurdle in constructing field effect transistors. Additionally, the 2-D planar structure of g-C3N4 is free of dangling bonds, providing an ideal substrate for graphene to sit on. Furthermore, when compared to a pure g-C3N4 monolayer, the hybrid graphene/g-C3N4 complex displays an enhanced optical absorption in the visible region, a promising feature for novel photovoltaic and photocatalytic applications.
Resumo:
We demonstrated for the first time by large-scale ab initio calculations that a graphene/titania interface in the ground electronic state forms a charge-transfer complex due to the large difference of work functions between graphene and titania, leading to substantial hole doping in graphene. Interestingly, electrons in the upper valence band can be directly excited from graphene to the conduction band, that is, the 3d orbitals of titania, under visible light irradiation. This should yield well-separated electron−hole pairs, with potentially high photocatalytic or photovoltaic performance in hybrid graphene and titania nanocomposites. Experimental wavelength-dependent photocurrent generation of the graphene/titania photoanode demonstrated noticeable visible light response and evidently verified our ab initio prediction.
Resumo:
A synthetic reevesite-like material has been shown to decolorize selected dyes and degrade phenolic contaminants photocatalytically in water when irradiated with visible light. This material can photoactively decolorize dyes such as bromophenol blue, bromocresol green, bromothymol blue, thymol blue and methyl orange in less than 15 min under visible light radiation in the absence of additional oxidizing agents. Conversely, phenolic compounds suc has phenol, p-chlorophenol and p-nitrophenol are photocat- alytically degraded in approximately 3hwith additional H2O2 when irradiated with visible light. These reactions offer potentially energy effective pathways for the removal of recalcitrant organic waste contaminants.
Resumo:
This practice-led project has two outcomes: a collection of short stories titled 'Corkscrew Section', and an exegesis. The short stories combine written narrative with visual elements such as images and typographic devices, while the exegesis analyses the function of these graphic devices within adult literary fiction. My creative writing explores a variety of genres and literary styles, but almost all of the stories are concerned with fusing verbal and visual modes of communication. The exegesis adopts the interpretive paradigm of multimodal stylistics, which aims to analyse graphic devices with the same level of detail as linguistic analysis. Within this framework, the exegesis compares and extends previous studies to develop a systematic method for analysing how the interactions between language, images and typography create meaning within multimodal literature.