941 resultados para Vertex Folkman Number
Resumo:
Invariant integrals are derived for nematic liquid crystals and applied to materials with small Ericksen number and topological defects. The nematic material is confined between two infinite plates located at y = -h and y = h (h is an element of R+) with a semi-infinite plate at y = 0 and x < 0. Planar and homeotropic strong anchoring boundary conditions to the director field are assumed at these two infinite and semi-infinite plates, respectively. Thus, a line disclination appears in the system which coincides with the z-axis. Analytical solutions to the director field in the neighbourhood of the singularity are obtained. However, these solutions depend on an arbitrary parameter. The nematic elastic force is thus evaluated from an invariant integral of the energy-momentum tensor around a closed surface which does not contain the singularity. This allows one to determine this parameter which is a function of the nematic cell thickness and the strength of the disclination. Analytical solutions are also deduced for the director field in the whole region using the conformal mapping method. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Endmember extraction (EE) is a fundamental and crucial task in hyperspectral unmixing. Among other methods vertex component analysis ( VCA) has become a very popular and useful tool to unmix hyperspectral data. VCA is a geometrical based method that extracts endmember signatures from large hyperspectral datasets without the use of any a priori knowledge about the constituent spectra. Many Hyperspectral imagery applications require a response in real time or near-real time. Thus, to met this requirement this paper proposes a parallel implementation of VCA developed for graphics processing units. The impact on the complexity and on the accuracy of the proposed parallel implementation of VCA is examined using both simulated and real hyperspectral datasets.
Resumo:
The development of high spatial resolution airborne and spaceborne sensors has improved the capability of ground-based data collection in the fields of agriculture, geography, geology, mineral identification, detection [2, 3], and classification [4–8]. The signal read by the sensor from a given spatial element of resolution and at a given spectral band is a mixing of components originated by the constituent substances, termed endmembers, located at that element of resolution. This chapter addresses hyperspectral unmixing, which is the decomposition of the pixel spectra into a collection of constituent spectra, or spectral signatures, and their corresponding fractional abundances indicating the proportion of each endmember present in the pixel [9, 10]. Depending on the mixing scales at each pixel, the observed mixture is either linear or nonlinear [11, 12]. The linear mixing model holds when the mixing scale is macroscopic [13]. The nonlinear model holds when the mixing scale is microscopic (i.e., intimate mixtures) [14, 15]. The linear model assumes negligible interaction among distinct endmembers [16, 17]. The nonlinear model assumes that incident solar radiation is scattered by the scene through multiple bounces involving several endmembers [18]. Under the linear mixing model and assuming that the number of endmembers and their spectral signatures are known, hyperspectral unmixing is a linear problem, which can be addressed, for example, under the maximum likelihood setup [19], the constrained least-squares approach [20], the spectral signature matching [21], the spectral angle mapper [22], and the subspace projection methods [20, 23, 24]. Orthogonal subspace projection [23] reduces the data dimensionality, suppresses undesired spectral signatures, and detects the presence of a spectral signature of interest. The basic concept is to project each pixel onto a subspace that is orthogonal to the undesired signatures. As shown in Settle [19], the orthogonal subspace projection technique is equivalent to the maximum likelihood estimator. This projection technique was extended by three unconstrained least-squares approaches [24] (signature space orthogonal projection, oblique subspace projection, target signature space orthogonal projection). Other works using maximum a posteriori probability (MAP) framework [25] and projection pursuit [26, 27] have also been applied to hyperspectral data. In most cases the number of endmembers and their signatures are not known. Independent component analysis (ICA) is an unsupervised source separation process that has been applied with success to blind source separation, to feature extraction, and to unsupervised recognition [28, 29]. ICA consists in finding a linear decomposition of observed data yielding statistically independent components. Given that hyperspectral data are, in given circumstances, linear mixtures, ICA comes to mind as a possible tool to unmix this class of data. In fact, the application of ICA to hyperspectral data has been proposed in reference 30, where endmember signatures are treated as sources and the mixing matrix is composed by the abundance fractions, and in references 9, 25, and 31–38, where sources are the abundance fractions of each endmember. In the first approach, we face two problems: (1) The number of samples are limited to the number of channels and (2) the process of pixel selection, playing the role of mixed sources, is not straightforward. In the second approach, ICA is based on the assumption of mutually independent sources, which is not the case of hyperspectral data, since the sum of the abundance fractions is constant, implying dependence among abundances. This dependence compromises ICA applicability to hyperspectral images. In addition, hyperspectral data are immersed in noise, which degrades the ICA performance. IFA [39] was introduced as a method for recovering independent hidden sources from their observed noisy mixtures. IFA implements two steps. First, source densities and noise covariance are estimated from the observed data by maximum likelihood. Second, sources are reconstructed by an optimal nonlinear estimator. Although IFA is a well-suited technique to unmix independent sources under noisy observations, the dependence among abundance fractions in hyperspectral imagery compromises, as in the ICA case, the IFA performance. Considering the linear mixing model, hyperspectral observations are in a simplex whose vertices correspond to the endmembers. Several approaches [40–43] have exploited this geometric feature of hyperspectral mixtures [42]. Minimum volume transform (MVT) algorithm [43] determines the simplex of minimum volume containing the data. The MVT-type approaches are complex from the computational point of view. Usually, these algorithms first find the convex hull defined by the observed data and then fit a minimum volume simplex to it. Aiming at a lower computational complexity, some algorithms such as the vertex component analysis (VCA) [44], the pixel purity index (PPI) [42], and the N-FINDR [45] still find the minimum volume simplex containing the data cloud, but they assume the presence in the data of at least one pure pixel of each endmember. This is a strong requisite that may not hold in some data sets. In any case, these algorithms find the set of most pure pixels in the data. Hyperspectral sensors collects spatial images over many narrow contiguous bands, yielding large amounts of data. For this reason, very often, the processing of hyperspectral data, included unmixing, is preceded by a dimensionality reduction step to reduce computational complexity and to improve the signal-to-noise ratio (SNR). Principal component analysis (PCA) [46], maximum noise fraction (MNF) [47], and singular value decomposition (SVD) [48] are three well-known projection techniques widely used in remote sensing in general and in unmixing in particular. The newly introduced method [49] exploits the structure of hyperspectral mixtures, namely the fact that spectral vectors are nonnegative. The computational complexity associated with these techniques is an obstacle to real-time implementations. To overcome this problem, band selection [50] and non-statistical [51] algorithms have been introduced. This chapter addresses hyperspectral data source dependence and its impact on ICA and IFA performances. The study consider simulated and real data and is based on mutual information minimization. Hyperspectral observations are described by a generative model. This model takes into account the degradation mechanisms normally found in hyperspectral applications—namely, signature variability [52–54], abundance constraints, topography modulation, and system noise. The computation of mutual information is based on fitting mixtures of Gaussians (MOG) to data. The MOG parameters (number of components, means, covariances, and weights) are inferred using the minimum description length (MDL) based algorithm [55]. We study the behavior of the mutual information as a function of the unmixing matrix. The conclusion is that the unmixing matrix minimizing the mutual information might be very far from the true one. Nevertheless, some abundance fractions might be well separated, mainly in the presence of strong signature variability, a large number of endmembers, and high SNR. We end this chapter by sketching a new methodology to blindly unmix hyperspectral data, where abundance fractions are modeled as a mixture of Dirichlet sources. This model enforces positivity and constant sum sources (full additivity) constraints. The mixing matrix is inferred by an expectation-maximization (EM)-type algorithm. This approach is in the vein of references 39 and 56, replacing independent sources represented by MOG with mixture of Dirichlet sources. Compared with the geometric-based approaches, the advantage of this model is that there is no need to have pure pixels in the observations. The chapter is organized as follows. Section 6.2 presents a spectral radiance model and formulates the spectral unmixing as a linear problem accounting for abundance constraints, signature variability, topography modulation, and system noise. Section 6.3 presents a brief resume of ICA and IFA algorithms. Section 6.4 illustrates the performance of IFA and of some well-known ICA algorithms with experimental data. Section 6.5 studies the ICA and IFA limitations in unmixing hyperspectral data. Section 6.6 presents results of ICA based on real data. Section 6.7 describes the new blind unmixing scheme and some illustrative examples. Section 6.8 concludes with some remarks.
Resumo:
Dissertation presented at Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia in fulfilment of the requirements for the Masters degree in Mathematics and Applications, specialization in Actuarial Sciences, Statistics and Operations Research
Resumo:
Bulletin of the Malaysian Mathematical Sciences Society, 2, 34 (1),(2011), p. 79–85
Resumo:
Serum samples from 150 NS1-negative (Platelia ELISA) patients presumptively diagnosed with dengue were analyzed by the TaqMan probed real-time reverse transcription PCR (TaqMan qRT-PCR) method. The qRT-PCR positive samples were tested for serotype by semi-nested RT-PCR and a qualitative immunochromatographic assay for IgG and IgM. Molecular detection methods showed 33 (22%) positive samples out of 150 NS1-antigen negative samples. Of these, 72% were collected up to day 2 after the onset of symptoms, when diagnostic sensitivity of NS1-antigen test assays is significantly enhanced. Most of the cases were not characterized as secondary infection. Twenty-eight samples were successfully serotyped, 75% of which for DENV-4, 14% for DENV-2, 7% for DENV-3 and 4% for DENV-1. These findings reaffirm the hyperendemic situation of the state of Roraima and suggest a lower sensitivity of the NS1 test, mainly when DENV-4 is the predominant serotype. Health care providers should therefore be aware of samples tested negative by NS1 antigen assays, especially when clinical symptoms and other laboratory data results show evidence of dengue infection.
Resumo:
Dissertation presented to obtain a Ph.D degree in Cellular Biology
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
Platelet function and plasma fibrinogen levels were evaluated in 14 patients, 10 males and 4females, aged 13-59years bitten by Bothrops genus snakes. There was a statistical difference (p < 0.05) among plasma fibrinogen levels evaluated 24 and 48 hours after envenomation. There was a tendency towards normalization after 48 hours of treatment. The low platelet number was clear in 24-48 hour evaluations with a tendency towards normalization after 48 hours of treatment (p<0.05). Fibrinogen levels and fibrin degradation product (FDP) levels appeared to be altered in 83.33% of patients evaluated. The authors suggest that platelet hypoaggregation is related to decreased fibrinogen and increased FDP levels.
Resumo:
INTRODUCTION: Forecasting dengue cases in a population by using time-series models can provide useful information that can be used to facilitate the planning of public health interventions. The objective of this article was to develop a forecasting model for dengue incidence in Campinas, southeast Brazil, considering the Box-Jenkins modeling approach. METHODS: The forecasting model for dengue incidence was performed with R software using the seasonal autoregressive integrated moving average (SARIMA) model. We fitted a model based on the reported monthly incidence of dengue from 1998 to 2008, and we validated the model using the data collected between January and December of 2009. RESULTS: SARIMA (2,1,2) (1,1,1)12 was the model with the best fit for data. This model indicated that the number of dengue cases in a given month can be estimated by the number of dengue cases occurring one, two and twelve months prior. The predicted values for 2009 are relatively close to the observed values. CONCLUSIONS: The results of this article indicate that SARIMA models are useful tools for monitoring dengue incidence. We also observe that the SARIMA model is capable of representing with relative precision the number of cases in a next year.
Resumo:
Introduction Here, we evaluated sweeping methods used to estimate the number of immature Aedes aegypti in large containers. Methods III/IV instars and pupae at a 9:1 ratio were placed in three types of containers with, each one with three different water levels. Two sweeping methods were tested: water-surface sweeping and five-sweep netting. The data were analyzed using linear regression. Results The five-sweep netting technique was more suitable for drums and water-tanks, while the water-surface sweeping method provided the best results for swimming pools. Conclusions Both sweeping methods are useful tools in epidemiological surveillance programs for the control of Aedes aegypti.
Resumo:
Tese de Doutoramento em Engenharia Têxtil
Resumo:
For a given self-map f of M, a closed smooth connected and simply-connected manifold of dimension m ≥ 4, we provide an algorithm for estimating the values of the topological invariant Dm r [f], which equals the minimal number of r-periodic points in the smooth homotopy class of f. Our results are based on the combinatorial scheme for computing Dm r [f] introduced by G. Graff and J. Jezierski [J. Fixed Point Theory Appl. 13 (2013), 63–84]. An open-source implementation of the algorithm programmed in C++ is publicly available at http://www.pawelpilarczyk.com/combtop/.
Resumo:
This paper presents microlenses (MLs) with low f-number made of AZ4562 photoresist for integration on optical microsystems. The fabrication process was based on the thermal reflow and rehydration. Large series of MLs were fabricated with a width of 35 μm, a thickness of 5 μm, and spaced apart by 3 μm. The MLs were fabricated directly on the surface of a die with type n+/p-substrate junction photodiode fabricated in a standard CMOS process. The measured focal length was 49 μm with a tolerance of ±2 μm (maximum error of ±4%), resulting in a numerical aperture of 33.6 × 10-2 (±1.3 × 10-2). The measurements also revealed an f-number of 1.4.