990 resultados para Vehicle Power Trains.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vehicle activated signs (VAS) display a warning message when drivers exceed a particular threshold. VAS are often installed on local roads to display a warning message depending on the speed of the approaching vehicles. VAS are usually powered by electricity; however, battery and solar powered VAS are also commonplace. This thesis investigated devel-opment of an automatic trigger speed of vehicle activated signs in order to influence driver behaviour, the effect of which has been measured in terms of reduced mean speed and low standard deviation. A comprehen-sive understanding of the effectiveness of the trigger speed of the VAS on driver behaviour was established by systematically collecting data. Specif-ically, data on time of day, speed, length and direction of the vehicle have been collected for the purpose, using Doppler radar installed at the road. A data driven calibration method for the radar used in the experiment has also been developed and evaluated. Results indicate that trigger speed of the VAS had variable effect on driv-ers’ speed at different sites and at different times of the day. It is evident that the optimal trigger speed should be set near the 85th percentile speed, to be able to lower the standard deviation. In the case of battery and solar powered VAS, trigger speeds between the 50th and 85th per-centile offered the best compromise between safety and power consump-tion. Results also indicate that different classes of vehicles report differ-ences in mean speed and standard deviation; on a highway, the mean speed of cars differs slightly from the mean speed of trucks, whereas a significant difference was observed between the classes of vehicles on lo-cal roads. A differential trigger speed was therefore investigated for the sake of completion. A data driven approach using Random forest was found to be appropriate in predicting trigger speeds respective to types of vehicles and traffic conditions. The fact that the predicted trigger speed was found to be consistently around the 85th percentile speed justifies the choice of the automatic model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solar-powered vehicle activated signs (VAS) are speed warning signs powered by batteries that are recharged by solar panels. These signs are more desirable than other active warning signs due to the low cost of installation and the minimal maintenance requirements. However, one problem that can affect a solar-powered VAS is the limited power capacity available to keep the sign operational. In order to be able to operate the sign more efficiently, it is proposed that the sign be appropriately triggered by taking into account the prevalent conditions. Triggering the sign depends on many factors such as the prevailing speed limit, road geometry, traffic behaviour, the weather and the number of hours of daylight. The main goal of this paper is therefore to develop an intelligent algorithm that would help optimize the trigger point to achieve the best compromise between speed reduction and power consumption. Data have been systematically collected whereby vehicle speed data were gathered whilst varying the value of the trigger speed threshold. A two stage algorithm is then utilized to extract the trigger speed value. Initially the algorithm employs a Self-Organising Map (SOM), to effectively visualize and explore the properties of the data that is then clustered in the second stage using K-means clustering method. Preliminary results achieved in the study indicate that using a SOM in conjunction with K-means method is found to perform well as opposed to direct clustering of the data by K-means alone. Using a SOM in the current case helped the algorithm determine the number of clusters in the data set, which is a frequent problem in data clustering.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To exploit the benefits offered by parallel HEVs, an intelligent energy management model is developed and evaluated in this paper. Despite most existing works, the developed model incorporates combined wind/drag, slope, rolling, and accessories loads to minimise the fuel consumption under varying driving conditions. A slope prediction unit is also employed. The engine and the electric motor can output power simultaneously under a heavy-load or a slopped road condition. Two simulation were conducted namely slopped-windy-prediction and slopped-windy-prediction-hybrid. The results indicate that the vehicle speed and acceleration is smoother where the hybrid component was included. The average fuel consumption for the first and second simulations were 7.94 and 7.46 liter/100 km, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The arts have evolved with each society as a means of consolidating cultural and social identity and connecting past with future generations (Russell-Bowie, 2006, p3). Situating the arts within a broader interdisciplinary curriculum, we believe, allows students to discover and explore social issues and their relevance to students' contemporary lives. We argue that creative music making through composition promotes a deeper and more personally relevant teaching and learning experience for teacher education students, particularly when situated within an interdisciplinary framework.

The challenge for us as teacher educators' is to prepare pre-service teachers for both disciplinary and interdisciplinary learning as is required by the Victorian Essential Learning Standards (VELS). At Deakin University, in the Bachelor of Teaching (Primary/Secondary) Degree, the postgraduate unit called Humanities, Societies and Environments; Language and Music Education adopts an interdisciplinary pedagogy that encourages students to learn from each other, share content knowledge and make links between and across VELS domains.

In this paper we reflect on the possibilities exploring of creative music making to enhance the teaching and learning of social education, with particular reference to issues of environmental change. Specifically, we reflect on non-music specialist students' experiences in Semester 1, 2008 using Jeannie Baker's book Window (1991) as a platform to deliberate about the impact of urbanisation on the environment. Through dramatisation and a sonic environment students were able to both further conceptualise issues of social change and their understandings of the power of integrating music across other VELS domains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents experimental and computational results obtained on the Ford Barra 190 4.0 litres I6 gasoline engine and on the Ford Falcon car equipped with this engine. Measurements of steady engine performance, fuel consumption and exhaust emissions were first collected using an automated test facility for a wide range of cam and spark timings vs. throttle position and engine speed. Simulations were performed for a significant number of measured operating points at full and part load by using a coupled Gamma Technologies GT-POWER/GT-COOL engine model for gas exchange, combustion and heat transfer. The fluid model was made up of intake and exhaust systems, oil circuit, coolant circuit and radiator cooling air circuit. The thermal model was made up of finite element components for cylinder head, cylinder, piston, valves and ports and wall thermal masses for pipes. The model was validated versus measured steady state air and fuel flow rates, cylinder pressure parameters, indicated and brake mean effective pressures, and temperature of metal, oil and coolant in selected locations. Computational results agree well with experiments, demonstrating the ability of the approach to produce fairly accurate steady state maps of BMEP and BSFC, as well as to optimize engine operation changing geometry, throttle position, cam and spark timing. Measurements of the transient performance and fuel consumption of the full vehicle were then collected over the NEDC cycle. Simulations were performed by using a coupled Gamma Technologies GT-POWER/GT-COOL/GT-DRIVE model for instantaneous engine gas exchange, combustion and heat transfer and vehicle motion. The full vehicle model is made up of transmission, driveshaft, axles, and car components and the previous engine model. The model was validated with measured fuel flow rates through the engine, engine throttle position, and engine speed and oil and coolant temperatures in selected locations. Instantaneous engine states following a time dependent demand for torque and speed differ from those obtained by interpolating steady state maps of BSFC vs. BMEP and speed. Computational results agree well with experiments, demonstrating the utility of the approach in providing a more accurate prediction of the fuel consumption over test cycles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hybrid electric vehicles are powered by an electric system and an internal combustion engine. The components of a hybrid electric vehicle need to be coordinated in an optimal manner to deliver the desired performance. This paper presents an approach based on direct method for optimal power management in hybrid electric vehicles with inequality constraints. The approach consists of reducing the optimal control problem to a set of algebraic equations by approximating the state variable which is the energy of electric storage, and the control variable which is the power of fuel consumption. This approximation uses orthogonal functions with unknown coefficients. In addition, the inequality constraints are converted to equal constraints. The advantage of the developed method is that its computational complexity is less than that of dynamic and non-linear programming approaches. Also, to use dynamic or non-linear programming, the problem should be discretized resulting in the loss of optimization accuracy. The propsed method, on the other hand, does not require the discretization of the problem producing more accurate results. An example is solved to demonstrate the accuracy of the proposed approach. The results of Haar wavelets, and Chebyshev and Legendre polynomials are presented and discussed. © 2011 The Korean Society of Automotive Engineers and Springer-Verlag Berlin Heidelberg.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The desire to reduce carbon emissions due to transportation sources has led over the past decade to the development of new propulsion technologies, focused on vehicle electrification (including hybrid, plug-in hybrid and battery electric vehicles). These propulsion technologies, along with advances in telecommunication and computing power, have the potential of making passenger and commercial vehicles more energy efficient and environment friendly. In particular, energy management algorithms are an integral part of plug-in vehicles and are very important for achieving the performance benefits. The optimal performance of energy management algorithms depends strongly on the ability to forecast energy demand from the vehicle. Information available about environment (temperature, humidity, wind, road grade, etc.) and traffic (traffic density, traffic lights, etc.), is very important in operating a vehicle at optimal efficiency. This article outlines some current technologies that can help achieving this optimum efficiency goal. In addition to information available from telematic and geographical information systems, knowledge of projected vehicle charging demand on the power grid is necessary to build an intelligent energy management controller for future plug-in hybrid and electric vehicles. The impact of charging millions of vehicles from the power grid could be significant, in the form of increased loading of power plants, transmission and distribution lines, emissions and economics (information are given and discussed for the US case). Therefore, this effect should be considered in an intelligent way by controlling/scheduling the charging through a communication based distributed control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Motorbike riders are 34-times more likely to die in a crash compared to car drivers per km travelled (1). Such safety risks together with special skill requirements for the driver and much lower comfort compared to normal cars are the main reasons why motorbikes represent only a fraction of all vehicle sales in developed countries. Deakin University is developing a revolutionary cross-over fun vehicle with ultra low fuel consumption and emissions. This new vehicle generation combines the best of two worlds: the fun to drive, low cost, and small size of a scooter together with the safety, comfort and easiness to operate of a car. The result is a vehicle that is more fuel efficient than most cars or even scooters.

Various tilting cross over vehicles have been presented over the last decade that were trying to automate the tilting control of narrow vehicles to make them safer. Examples of these concepts are the Carver, Clever and in some way also the MP3 scooter from Piaggio. The problem with fully enclosed concepts like the Carver or Clever is that they require very complex and therefore also expensive tilting control systems so that the vehicles are not price competitive compared to low cost micro cars or even normal small cars. The MP3 on the other hand comes with a tilting control system which is only semi automatic so that typical car advantages - comprehensive safety features like crush zones, roll over protection, air bags, safety belts or comfort features like full weather protection including heating and cooling – can not be provided.

Deakin’s approach is quite different to the above mentioned concepts. The requirements were derived based on two different investigations: The first step was a critical evaluation of social trends and the second step was an in-depth benchmarking study of existing concepts which identified the typical strengths and weaknesses of these concepts. In a critical next step a new concept was created that addresses most of the weaknesses of existing tilting three-wheelers in a holistic approach by setting clear priority rankings for the vehicle targets, based on current trends. The priorities were set in the following order: Safety, Affordability, Fun and Efficiency (SAFE).

The key feature that enables an enclosed tilting vehicle is a fully automatic tilting control system. With an automatic tilting control system the driver does not need to put the feet on the ground to balance the vehicle when he stops, so the vehicle can be built with a full enclosure. This allows the implementation of typical car like safety features (seat belts, roll over structure, crush zones, air bags). The SafeRide™ tilting control system is a passive system that involves the driver’s balancing sense in its feedback control system. The vehicle has typical scooter like steering characteristics, where the steering is initiated through countersteering. Another safety critical design feature is the crush zone between the two front wheels which is not possible with only one front wheel or with the powertrain positioned between the front wheels, as the powertrain can’t absorb a lot of energy due to its structural stiffness and density. The passive tilting control system is quite simple and therefore makes the vehicle very affordable, an important factor for successful commercialisation.

Another advantage of integrating the human balancing senses in the feedback control of the tilting system is that the system kicks in slightly after the human balancing reacts. In some instances that can generate the typical adrenalin thrill known from riding a bike. This fun factor is quite common with many trend sports like mountain biking, surfing, roller-skating, snowboarding, or skateboarding. Some of these sports have seen very rapid growth only a short time after they have been invented. Utilising the human balancing system during driving also makes the vehicle safer as the adrenalin is produced after reaching a semi-stable driving condition that is controlled by the vehicles tilting control system, but before the vehicle reaches an unstable driving condition that can not be controlled by the vehicle but only (eventually) by the driver – if he has got the required driving skill and if he is alert enough.

Efficiency superior to most cars and scooters is achieved by the aerodynamics of a fully enclosed body structure in combination with the small frontal area of a typical scooter and the droplet shape enabled by the relatively wide front with 2 wheels and the very narrow tail with only one rear wheel. The passive tilting system also contributes to the extreme efficiency as the system only draws some small electrical power for the electronic control unit. Another feature is a low cost exhaust energy recovery system which is discussed in another paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a nonlinear controller design for vehicle-to-grid (V2G) systems with LCL output filters. The V2G systems are modeled with LCL output filters in order to eliminate harmonics for improving power qualities and the nonlinear controller is designed based on the feedback linearization. The feasibility of using the appropriate feedback linearization approaches, either partial or exact, is also investigated through the feedback linearizability of V2G systems. In this paper, partial feedback linearization is used to design the controller with a capability of sharing both active and reactive power in V2G systems. The performance of the proposed controller controller is evaluated on a single-phase full-bridge converter-based V2G system with an LCL output filter and compared to that of without any filter. Simulation results clearly demonstrate the harmonic elimination capabilities of the proposed V2G structure with the proposed control scheme.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the comparison of three topologies of multilevel inverters applied to drive an induction motor of 500 kVA/4.16 kV. The multilevel inverters analyzed are: a neutral point clamped inverter, a symmetrical cascaded multilevel inverter and a hybrid asymmetrical cascaded multilevel inverter. The performance indexes used in the comparison are total harmonic distortion, first order distortion factor, semiconductors power losses distribution and heat-sink volume. The comparison is developed with the purpose of finding the efficiency and the heat-sink volume where the three systems present the same output filter. ©2008 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the development and experimental analysis of a special input stage converter for a Trolleybus type vehicle allowing its operation in AC (two wires, single-phase) or DC distribution networks. The architecture of proposed input stage converter is composed by five interleaved boost rectifiers operating in discontinuous conduction mode. Furthermore, due to the power lines characteristics, the proposed input power structure can act as AC to DC or as DC to DC converter providing a proper DC output voltage range required to the DC bus. When operation is AC to DC, the converter is capable to provide high power factor with reduced harmonic distortion for the input current, complying with the restrictions imposed by IEC 61000-3-4 standard. Finally, the main experimental results are presented in order to verify the feasibility of the proposed converter, demonstrating the benefits and the possibility for AC feeding system for trolleybus type vehicle. © 2010 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEIS

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new mixed-integer linear programming (MILP) model is proposed to represent the plug-in electric vehicles (PEVs) charging coordination problem in electrical distribution systems. The proposed model defines the optimal charging schedule for each division of the considered period of time that minimizes the total energy costs. Moreover, priority charging criteria is taken into account. The steady-state operation of the electrical distribution system, as well as the PEV batteries charging is mathematically represented; furthermore, constraints related to limits of voltage, current and power generation are included. The proposed mathematical model was applied in an electrical distribution system used in the specialized literature and the results show that the model can be used in the solution of the PEVs charging problem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Der vorliegende Artikel beschäftigt sich mit der performativen Aushandlung nationaler Kultur auf dem National Festival of Arts and Culture, das 2006 in Wa, Nordwestghana, stattfand. Die Autorin nahm an der Vorbereitung und Planung des Festivals in lokalen staatlichen Kulturinstitutionen teil, und beobachtete die Diskussionen um die Repräsentation einer (imaginierten) spezifischen Kultur des Nordens in scharfer Abgrenzung zu der des als dominant und diskriminierend empfundenen Südens. In diesem Zusammenhang werden Fragen der Authentizität und Authentifizierung, wie sie in der Planung und Rezeption diskutiert wurden, aufgegriffen und mit der Konzeption des Festivals als gleichzeitig einheitsstiftendes Vehikel für nationale Identität und als Austragungsort eines Wettbewerbs der Regionen um Anerkennung und Ressourcen in Verbindung gesetzt. Das Festival, so die Argumentation, ist eine cultural performance, die das Wesen einer „Kultur“ nicht nur abbildet, sondern auch die Möglichkeit des Wandels und der Subversion birgt. Performance meint hier also gleichzeitig die Aufführung und das Skript der Diskurse, die der Aufführung Bedeutung zuschreiben. Diesen doppelten Ansatz verfolgt der Artikel durch die Verknüpfung von Festivalbeobachtungen und Komiteesitzungsmitschriften im Rahmen der Vorbereitung.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The first part of this thesis has focused on the construction of a twelve-phase asynchronous machine for More Electric Aircraft (MEA) applications. In fact, the aerospace world has found in electrification the way to improve the efficiency, reliability and maintainability of an aircraft. This idea leads to the aircraft a new management and distribution of electrical services. In this way is possible to remove or to reduce the hydraulic, mechanical and pneumatic systems inside the aircraft. The second part of this dissertation is dedicated on the enhancement of the control range of matrix converters (MCs) operating with non-unity input power factor and, at the same time, on the reduction of the switching power losses. The analysis leads to the determination in closed form of a modulation strategy that features a control range, in terms of output voltage and input power factor, that is greater than that of the traditional strategies under the same operating conditions, and a reduction in the switching power losses.