924 resultados para Vector computers
Resumo:
Canonical forms for m-valued functions referred to as m-Reed-Muller canonical (m-RMC) forms that are a generalization of RMC forms of two-valued functions are proposed. m-RMC forms are based on the operations ?m (addition mod m) and .m (multiplication mod m) and do not, as in the cases of the generalizations proposed in the literature, require an m-valued function for m not a power of a prime, to be expressed by a canonical form for M-valued functions, where M > m is a power of a prime. Methods of obtaining the m-RMC forms from the truth vector or the sum of products representation of an m-valued function are discussed. Using a generalization of the Boolean difference to m-valued logic, series expansions for m-valued functions are derived.
Resumo:
We investigate the use of a two stage transform vector quantizer (TSTVQ) for coding of line spectral frequency (LSF) parameters in wideband speech coding. The first stage quantizer of TSTVQ, provides better matching of source distribution and the second stage quantizer provides additional coding gain through using an individual cluster specific decorrelating transform and variance normalization. Further coding gain is shown to be achieved by exploiting the slow time-varying nature of speech spectra and thus using inter-frame cluster continuity (ICC) property in the first stage of TSTVQ method. The proposed method saves 3-4 bits and reduces the computational complexity by 58-66%, compared to the traditional split vector quantizer (SVQ), but at the expense of 1.5-2.5 times of memory.
Resumo:
The subspace intersection method (SIM) provides unbiased bearing estimates of multiple acoustic sources in a range-independent shallow ocean using a one-dimensional search without prior knowledge of source ranges and depths. The original formulation of this method is based on deployment of a horizontal linear array of hydrophones which measure acoustic pressure. In this paper, we extend SIM to an array of acoustic vector sensors which measure pressure as well as all components of particle velocity. Use of vector sensors reduces the minimum number of sensors required by a factor of 4, and also eliminates the constraint that the intersensor spacing should not exceed half wavelength. The additional information provided by the vector sensors leads to performance enhancement in the form of lower estimation error and higher resolution.
Resumo:
Screening and early identification of primary immunodeficiency disease (PID) genes is a major challenge for physicians. Many resources have catalogued molecular alterations in known PID genes along with their associated clinical and immunological phenotypes. However, these resources do not assist in identifying candidate PID genes. We have recently developed a platform designated Resource of Asian PDIs, which hosts information pertaining to molecular alterations, protein-protein interaction networks, mouse studies and microarray gene expression profiling of all known PID genes. Using this resource as a discovery tool, we describe the development of an algorithm for prediction of candidate PID genes. Using a support vector machine learning approach, we have predicted 1442 candidate PID genes using 69 binary features of 148 known PID genes and 3162 non-PID genes as a training data set. The power of this approach is illustrated by the fact that six of the predicted genes have recently been experimentally confirmed to be PID genes. The remaining genes in this predicted data set represent attractive candidates for testing in patients where the etiology cannot be ascribed to any of the known PID genes.
Resumo:
Background: Bhutan has reduced its malaria incidence significantly in the last 5 years, and is aiming for malaria elimination by 2016. To assist with the management of the Bhutanese malaria elimination programme a spatial decision support system (SDSS) was developed. The current study aims to describe SDSS development and evaluate SDSS utility and acceptability through informant interviews. Methods: The SDSS was developed based on the open-source Quantum geographical information system (QGIS) and piloted to support the distribution of long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) in the two sub-districts of Samdrup Jongkhar District. It was subsequently used to support reactive case detection (RACD) in the two sub-districts of Samdrup Jongkhar and two additional sub-districts in Sarpang District. Interviews were conducted to ascertain perceptions on utility and acceptability of 11 informants using the SDSS, including programme and district managers, and field workers. Results: A total of 1502 households with a population of 7165 were enumerated in the four sub-districts, and a total of 3491 LLINs were distributed with one LLIN per 1.7 persons. A total of 279 households representing 728 residents were involved with RACD. Informants considered that the SDSS was an improvement on previous methods for organizing LLIN distribution, IRS and RACD, and could be easily integrated into routine malaria and other vector-borne disease surveillance systems. Informants identified some challenges at the programme and field level, including the need for more skilled personnel to manage the SDSS, and more training to improve the effectiveness of SDSS implementation and use of hardware. Conclusions: The SDSS was well accepted and informants expected its use to be extended to other malaria reporting districts and other vector-borne diseases. Challenges associated with efficient SDSS use included adequate skills and knowledge, access to training and support, and availability of hardware including computers and global positioning system receivers.
Resumo:
We address the issue of rate-distortion (R/D) performance optimality of the recently proposed switched split vector quantization (SSVQ) method. The distribution of the source is modeled using Gaussian mixture density and thus, the non-parametric SSVQ is analyzed in a parametric model based framework for achieving optimum R/D performance. Using high rate quantization theory, we derive the optimum bit allocation formulae for the intra-cluster split vector quantizer (SVQ) and the inter-cluster switching. For the wide-band speech line spectrum frequency (LSF) parameter quantization, it is shown that the Gaussian mixture model (GMM) based parametric SSVQ method provides 1 bit/vector advantage over the non-parametric SSVQ method.
Resumo:
We propose a new weighting function which is computationally simple and an approximation to the theoretically derived optimum weighting function shown in the literature. The proposed weighting function is perceptually motivated and provides improved vector quantization performance compared to several weighting functions proposed so far, for line spectrum frequency (LSF) parameter quantization of both clean and noisy speech data.
Resumo:
Support Vector Machines(SVMs) are hyperplane classifiers defined in a kernel induced feature space. The data size dependent training time complexity of SVMs usually prohibits its use in applications involving more than a few thousands of data points. In this paper we propose a novel kernel based incremental data clustering approach and its use for scaling Non-linear Support Vector Machines to handle large data sets. The clustering method introduced can find cluster abstractions of the training data in a kernel induced feature space. These cluster abstractions are then used for selective sampling based training of Support Vector Machines to reduce the training time without compromising the generalization performance. Experiments done with real world datasets show that this approach gives good generalization performance at reasonable computational expense.
Resumo:
The determination of the overconsolidation ratio (OCR) of clay deposits is an important task in geotechnical engineering practice. This paper examines the potential of a support vector machine (SVM) for predicting the OCR of clays from piezocone penetration test data. SVM is a statistical learning theory based on a structural risk minimization principle that minimizes both error and weight terms. The five input variables used for the SVM model for prediction of OCR are the corrected cone resistance (qt), vertical total stress (sigmav), hydrostatic pore pressure (u0), pore pressure at the cone tip (u1), and the pore pressure just above the cone base (u2). Sensitivity analysis has been performed to investigate the relative importance of each of the input parameters. From the sensitivity analysis, it is clear that qt=primary in situ data influenced by OCR followed by sigmav, u0, u2, and u1. Comparison between SVM and some of the traditional interpretation methods is also presented. The results of this study have shown that the SVM approach has the potential to be a practical tool for determination of OCR.
Resumo:
A novel dodecagonal space vector structure for induction motor drive is presented in this paper. It consists of two dodecagons, with the radius of the outer one twice the inner one. Compared to existing dodecagonal space vector structures, to achieve the same PWM output voltage quality, the proposed topology lowers the switching frequency of the inverters and reduces the device ratings to half. At the same time, other benefits obtained from existing dodecagonal space vector structure are retained here. This includes the extension of the linear modulation range and elimination of all 6+/-1 harmonics (n=odd) from the phase voltage. The proposed structure is realized by feeding an open-end winding induction motor with two conventional three level inverters. A detailed calculation of the PWM timings for switching the space vector points is also presented. Simulation and experimental results indicate the possible application of the proposed idea for high power drives.
Resumo:
Extensible Markup Language ( XML) has emerged as a medium for interoperability over the Internet. As the number of documents published in the form of XML is increasing, there is a need for selective dissemination of XML documents based on user interests. In the proposed technique, a combination of Adaptive Genetic Algorithms and multi class Support Vector Machine ( SVM) is used to learn a user model. Based on the feedback from the users, the system automatically adapts to the user's preference and interests. The user model and a similarity metric are used for selective dissemination of a continuous stream of XML documents. Experimental evaluations performed over a wide range of XML documents, indicate that the proposed approach significantly improves the performance of the selective dissemination task, with respect to accuracy and efficiency.
Resumo:
This paper addresses the challenges of flood mapping using multispectral images. Quantitative flood mapping is critical for flood damage assessment and management. Remote sensing images obtained from various satellite or airborne sensors provide valuable data for this application, from which the information on the extent of flood can be extracted. However the great challenge involved in the data interpretation is to achieve more reliable flood extent mapping including both the fully inundated areas and the 'wet' areas where trees and houses are partly covered by water. This is a typical combined pure pixel and mixed pixel problem. In this paper, an extended Support Vector Machines method for spectral unmixing developed recently has been applied to generate an integrated map showing both pure pixels (fully inundated areas) and mixed pixels (trees and houses partly covered by water). The outputs were compared with the conventional mean based linear spectral mixture model, and better performance was demonstrated with a subset of Landsat ETM+ data recorded at the Daly River Basin, NT, Australia, on 3rd March, 2008, after a flood event.
Resumo:
Fuel cells are emerging as alternate green power producers for both large power production and for use in automobiles. Hydrogen is seen as the best option as a fuel; however, hydrogen fuel cells require recirculation of unspent hydrogen. A supersonic ejector is an apt device for recirculation in the operating regimes of a hydrogen fuel cell. Optimal ejectors have to be designed to achieve best performances. The use of the vector evaluated particle swarm optimization technique to optimize supersonic ejectors with a focus on its application for hydrogen recirculation in fuel cells is presented here. Two parameters, compression ratio and efficiency, have been identified as the objective functions to be optimized. Their relation to operating and design parameters of ejector is obtained by control volume based analysis using a constant area mixing approximation. The independent parameters considered are the area ratio and the exit Mach number of the nozzle. The optimization is carried out at a particularentrainment ratio and results in a set of nondominated solutions, the Pareto front. A set of such curves can be used for choosing the optimal design parameters of the ejector.
Resumo:
Novel switching sequences can be employed in spacevector-based pulsewidth modulation (PWM) of voltage source inverters. Differentswitching sequences are evaluated and compared in terms of inverter switching loss. A hybrid PWM technique named minimum switching loss PWM is proposed, which reduces the inverter switching loss compared to conventional space vector PWM (CSVPWM) and discontinuous PWM techniques at a given average switching frequency. Further, four space-vector-based hybrid PWM techniques are proposed that reduce line current distortion as well as switching loss in motor drives, compared to CSVPWM. Theoretical and experimental results are presented.
Resumo:
Extensible Markup Language ( XML) has emerged as a medium for interoperability over the Internet. As the number of documents published in the form of XML is increasing, there is a need for selective dissemination of XML documents based on user interests. In the proposed technique, a combination of Adaptive Genetic Algorithms and multi class Support Vector Machine ( SVM) is used to learn a user model. Based on the feedback from the users, the system automatically adapts to the user's preference and interests. The user model and a similarity metric are used for selective dissemination of a continuous stream of XML documents. Experimental evaluations performed over a wide range of XML documents, indicate that the proposed approach significantly improves the performance of the selective dissemination task, with respect to accuracy and efficiency.