976 resultados para Vascular Endothelial-cells


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lymph nodes are strategically localized at the interfaces between the blood and lymphatic vascular system, delivering immune cells and antigens to the lymph node. As cellular junctions of endothelial cells actively regulate vascular permeability and cell traffic, we have investigated their molecular composition by performing an extensive immunofluorescence study for adherens and tight junction molecules, including vascular endothelium (VE)-cadherin, the vascular claudins 1, 3, 5 and 12, occludin, members of the junctional adhesion molecule family plus endothelial cell-selective adhesion molecule (ESAM)-1, platelet endothelial cell adhesion molecule-1, ZO-1 and ZO-2. We found that junctions of high endothelial venules (HEV), which serve as entry site for naive lymphocytes, are unique due to their lack of the endothelial cell-specific claudin-5. LYVE-1(+) sinus-lining endothelial cells form a diffusion barrier for soluble molecules that arrive at the afferent lymph and use claudin-5 and ESAM-1 to establish characteristic tight junctions. Analysis of the spatial relationship between the different vascular compartments revealed that HEV extend beyond the paracortex into the medullary sinuses, where they are protected from direct contact with the lymph by sinus-lining endothelial cells. The specific molecular architecture of cellular junctions present in blood and lymphatic vessel endothelium in peripheral lymph nodes establishes distinct barriers controlling the distribution of antigens and immune cells within this tissue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anti-human leukocyte antigen class I (HLA I) antibodies were shown to activate several protein kinases in endothelial cells (ECs), which induces proliferation and cell survival. An important phenomenon in antibody-mediated rejection is the occurrence of interstitial edema. We investigated the effect of anti-HLA I antibodies on endothelial proliferation and permeability, as one possible underlying mechanism of edema formation. HLA I antibodies increased the permeability of cultured ECs isolated from umbilical veins. Anti-HLA I antibodies induced the production of vascular endothelial growth factor (VEGF) by ECs, which activated VEGF receptor 2 (VEGFR2) in an autocrine manner. Activated VEGFR2 led to a c-Src-dependent phosphorylation of vascular endothelial (VE)-cadherin and its degradation. Aberrant VE-cadherin expression resulted in impaired adherens junctions, which might lead to increased endothelial permeability. This effect was only observed after cross-linking of HLA I molecules by intact antibodies. Furthermore, our results suggest that increased endothelial proliferation following anti-HLA I treatment occurs via autocrine VEGFR2 activation. Our data indicate the ability of anti-HLA I to induce VEGF production in ECs. Transactivation of VEGFR2 leads to increased EC proliferation and paracellular permeability. The autocrine effect of VEGF on endothelial permeability might be an explanation for the formation of interstitial edema after transplantation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Clinical observations are suggesting accelerated granulation tissue formation in traumatic wounds treated with vacuum-assisted closure (VAC). Aim of this study was to determine the impact of VAC therapy versus alternative Epigard application on local inflammation and neovascularization in traumatic soft tissue wounds. METHODS: Thirty-two patients with traumatic wounds requiring temporary coverage (VAC n = 16; Epigard n = 16) were included. At each change of dressing, samples of wound fluid and serum were collected (n = 80). The cytokines interleukin (IL)-6, IL-8, vascular endothelial growth factor (VEGF), and fibroblast growth factor-2 were measured by ELISA. Wound biopsies were examined histologically for inflammatory cells and degree of neovascularization present. RESULTS: All cytokines were found to be elevated in wound fluids during both VAC and Epigard treatment, whereas serum concentrations were negligible or not detectable. In wound fluids, significantly higher IL-8 (p < 0.001) and VEGF (p < 0.05) levels were detected during VAC therapy. Furthermore, histologic examination revealed increased neovascularization (p < 0.05) illustrated by CD31 and von Willebrand factor immunohistochemistry in wound biopsies of VAC treatment. In addition, there was an accumulation of neutrophils as well as an augmented expression of VEGF (p < 0.005) in VAC wound biopsies. CONCLUSION: This study suggests that VAC therapy of traumatic wounds leads to increased local IL-8 and VEGF concentrations, which may trigger accumulation of neutrophils and angiogenesis and thus, accelerate neovascularization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND AND AIMS: Well-differentiated neuro-endocrine ileal carcinoids are composed of serotonin-producing enterochromaffin (EC) cells. Life expectancy is determined by metastatic spread to the liver because medical treatment options are still very limited. Selective inhibition of angiogenesis or lymphangiogenesis might prevent tumour growth and metastatic spread. We examined the role of the vascular endothelial growth factors (VEGFs) A, B, C, D, and their receptors (VEGFRs) 1, 2, 3 in angiogenesis and lymphangiogenesis of ileal EC cell carcinoids with and without liver metastases. METHODS: The expression of various VEGFs and VEGFRs was determined by quantitative real-time RT-PCR in healthy mucosa, primary tumour, lymph node metastases and liver metastases of 25 patients with ileal EC cell carcinoids. Microvessel density (MVD) was determined by CD-31 staining in primary tumours and lymphatic vessel density (LVD) by LYVE-1 staining. VEGF expression levels, MVD, LVD, and patients' survival time were correlated using logistic regression and Kaplan-Meier survival analysis. RESULTS: VEGF-A was highly expressed with no difference between normal mucosa and tumours. VEGF-B and -D as well as VEGFR-1 and -2 expression levels were significantly increased in the tumours when compared to normal mucosa. Patients with liver metastasis, however, had a significantly lower expression of the factors A, B, and C and the receptors 2 and 3. MVD in primary tumours positively correlated with the expression of VEGF ligands and their receptors, except for VEGF-D. LVD did not correlate with any VEGF ligand or receptor. Interestingly, low expression levels of VEGF-B were associated with poor survival. CONCLUSION: Patients with more aggressive metastatic spreading had relatively decreased expression levels of VEGF ligands and receptors. Thus, anti-angiogenic therapy may not be a suitable target in metastatic ileal EC cell carcinoids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Barrier characteristics of brain endothelial cells forming the blood-brain barrier (BBB) are tightly regulated by cellular and acellular components of the neurovascular unit. During embryogenesis, the accumulation of the heparan sulfate proteoglycan agrin in the basement membranes ensheathing brain vessels correlates with BBB maturation. In contrast, loss of agrin deposition in the vasculature of brain tumors is accompanied by the loss of endothelial junctional proteins. We therefore wondered whether agrin had a direct effect on the barrier characteristics of brain endothelial cells. Agrin increased junctional localization of vascular endothelial (VE)-cadherin, β-catenin, and zonula occludens-1 (ZO-1) but not of claudin-5 and occludin in the brain endothelioma cell line bEnd5 without affecting the expression levels of these proteins. This was accompanied by an agrin-induced reduction of the paracellular permeability of bEnd5 monolayers. In vivo, the lack of agrin also led to reduced junctional localization of VE-cadherin in brain microvascular endothelial cells. Taken together, our data support the notion that agrin contributes to barrier characteristics of brain endothelium by stabilizing the adherens junction proteins VE-cadherin and β-catenin and the junctional protein ZO-1 to brain endothelial junctions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Asialoglycoprotein receptor-1 (ASGR1) mediates capture and phagocytosis of platelets in pig-to-primate liver xenotransplantation. However, thrombocytopenia is also observed in xenotransplantation or xenoperfusion of other porcine organs than liver. We therefore assessed ASGR1 expression as well as ASGR1-mediated xenogeneic platelet phagocytosis in vitro and ex vivo on porcine aortic, femoral arterial, and liver sinusoidal endothelial cells (PAEC/PFAEC/PLSEC). METHODS Porcine forelimbs were perfused with whole, heparinized human or autologous pig blood. Platelets were counted at regular intervals. Pig limb muscle and liver, as well as PAEC/PFAEC/PLSEC, were characterized for ASGR1 expression. In vitro, PAEC cultured on microcarrier beads and incubated with non-anticoagulated human blood were used to study binding of human platelets and platelet-white blood cell aggregation. Carboxyfluorescein diacetate succinimidyl ester-labeled human platelets were exposed to PAEC/PFAEC/PLSEC and analyzed for ASGR1-mediated phagocytosis. RESULTS Human platelet numbers decreased from 102 ± 33 at beginning to 13 ± 6 × 10/μL (P < 0.0001) after 10 minutes of perfusion, whereas no significant decrease of platelets was seen during autologous perfusions (171 ± 26 to 122 ± 95 × 10/μL). The PAEC, PFAEC, and PLSEC all showed similar ASGR1 expression. In vitro, no correlation was found between reduction in platelet count and platelet-white blood cell aggregation. Phagocytosis of human carboxyfluorescein diacetate succinimidyl ester-labeled platelets by PAEC/PFAEC/PLSEC peaked at 15 minutes and was inhibited (P < 0.05 to P < 0.0001) by rabbit anti-ASGR1 antibody and asialofetuin. CONCLUSIONS The ASGR1 expressed on aortic and limb arterial pig vascular endothelium plays a role in binding and phagocytosis of human platelets. Therefore, ASGR1 may represent a novel therapeutic target to overcome thrombocytopenia associated with vascularized pig-to-primate xenotransplantation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pancreatic adenocarcinoma is currently the fifth-leading cause of cancer-related death in the United States. Like with other solid tumors, the growth and metastasis of pancreatic adenocarcinoma are dependent on angiogenesis. Vascular endothelial growth factor (VEGF) is a key angiogenic molecule that plays an important role in angiogenesis, growth and metastasis of many types of human cancer, including pancreatic adenocarcinoma. However, the expression and regulation of VEGF in human pancreatic cancer cells are mostly unknown. ^ To examine the hypothesis that VEGF is constitutively expressed in human pancreatic cancer cells, and can be further induced by tumor environment factors such as nitric oxide, a panel of human pancreatic cancer cell lines were studied for constitutive and inducible VEGF expression. All the cell lines examined were shown to constitutively express various levels of VEGF. To identify the mechanisms responsible for the elevated expression of VEGF, its rates of turnover and transcription were then investigated. While the half-live of VEGF was unaffected, higher transcription rates and increased VEGF promoter activity were observed in tumor cells that constitutively expressed elevated levels of VEGF. Detailed VEGF promoter analyses revealed that the region from −267 to +50, which contains five putative Sp1 binding sites, was responsible for this VEGF promoter activity. Further deletion and point mutation analyses indicated that deletion of any of the four proximal Sp1 binding sites significantly diminished VEGF promoter activity and when all four binding sites were mutated, it was completely abrogated. Consistent with these observations, high levels of constitutive Sp1 expression and DNA binding activities were detected in pancreatic cancer cells expressing high levels of VEGF. Collectively, our data indicates that constitutively expressed Sp1 leads to the constitutive expression of VEGF, and implicates that both molecules involve in the aggressive pathogenesis of human pancreatic cancer. ^ Although constitutively expressed in pancreatic cancer cells, VEGF can be further induced. In human pancreatic cancer specimens, we found that in addition to VEGF, both inducible nitric oxide synthase (iNOS) and endothelial nitric oxide synthase (eNOS) were overexpressed, suggesting that nitric oxide might upregulate VEGF expression. Indeed, a nitric oxide donor S-nitroso-N-acetyl-D,L-penicillamine (SNAP) significantly induced VEGF mRNA expression and protein secretion in pancreatic adenocarcinoma cells in a time- and dose-dependant manner. Using a luciferase reporter containing both the VEGF promoter and the 3′ -UTR, we showed that SNAP significantly increased luciferase activity in human pancreatic cancer cells. Notwithstanding its ability to induce VEGF in vitro, pancreatic cancer cells genetically engineered to produce NO did not exhibit increased tumor growth. This inability of NO to promote tumor growth appears to be related to NO-mediated cytotoxicity. The balance between NO mediated effects on pro-angiogenesis and cytotoxicity would determine the biological outcome of NO action on tumor cells. ^ In summary, we have demonstrated that VEGF is constitutively expressed in human pancreatic cancer cells, and that overexpression of transcription factor Sp1 is primarily responsible. Although constitutively expressed in these cells, VEGF can be further induced by NO. However, using a mouse model, we have shown that NO inhibited tumor growth by promoting cytotoxicity. These studies suggest that both Sp1 and NO may be important targets for designing potentially effective therapies of human pancreatic cancer and warrant further investigation. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vascular endothelial growth factor (VEGF) is a secreted endothelial cell mitogen that has been shown to induce vasculogenesis and angiogenesis in many organ systems and tumors. Considering the importance of VEGF to embryonic vascularization and survival, the effects of administered VEGF on developing or adult cerebrovasculature are unknown: can VEGF alter brain angiogenesis or mature cerebrovascular patterns? To examine these questions we exposed fetal, newborn, and adult rat cortical slice explants to graduated doses of recombinant VEGF. The effects of another known angiogenic factor, basic fibroblast growth factor (bFGF), were evaluated in a comparable manner. In addition, we infused VEGF via minipump into the adult cortex. Significant angiogenic effects were found in all VEGF experiments in a dose-responsive manner that were abolished by the addition of VEGF neutralizing antibody. Fetal and newborn explants had a highly complex network of branched vessels that immunoexpressed the flt-1 VEGF receptor, and flk-1 VEGF receptor expression was determined by reverse transcription–PCR. Adult explants had enlarged, dilated vessels that appeared to be an expansion of the existing network. All bFGF-treated explants had substantially fewer vascular profiles. VEGF infusions produced both a remarkable localized neovascularization and, unexpectedly, the expression of flt-1 on reactive astrocytes but not on endothelial cells. The preponderance of neovascularization in vitro and in vivo, however, lacked the blood–brain barrier (BBB) phenotype marker, GLUT-1, suggesting that in brain the angiogenic role of VEGF may differ from a potential BBB functional role, i.e., transport and permeability. VEGF may serve an important capacity in neovascularization or BBB alterations after brain injury.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have recently shown that VEGF functions as a survival factor for newly formed vessels during developmental neovascularization, but is not required for maintenance of mature vessels. Reasoning that expanding tumors contain a significant fraction of newly formed and remodeling vessels, we examined whether abrupt withdrawal of VEGF will result in regression of preformed tumor vessels. Using a tetracycline-regulated VEGF expression system in xenografted C6 glioma cells, we showed that shutting off VEGF production leads to detachment of endothelial cells from the walls of preformed vessels and their subsequent death by apoptosis. Vascular collapse then leads to hemorrhages and extensive tumor necrosis. These results suggest that enforced withdrawal of vascular survival factors can be applied to target preformed tumor vasculature in established tumors. The system was also used to examine phenotypes resulting from over-expression of VEGF. When expression of the transfected VEGF cDNA was continuously “on,” tumors became hyper-vascularized with abnormally large vessels, presumably arising from excessive fusions. Tumors were significantly less necrotic, suggesting that necrosis in these tumors is the result of insufficient angiogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The vascular endothelial growth factor (VEGF) has been shown to be a significant mediator of angiogenesis during a variety of normal and pathological processes, including tumor development. Human U87MG glioblastoma cells express the three VEGF isoforms: VEGF121, VEGF165, and VEGF189. Here, we have investigated whether these three isoforms have distinct roles in glioblastoma angiogenesis. Clones that overexpressed each isoform were derived and inoculated into mouse brains. Mice that received VEGF121- and VEGF165-overexpressing cells developed intracerebral hemorrhages after 60–90 hr. In contrast, mice implanted with VEGF189-overexpressing cells had only slightly larger tumors than those caused by parental cells and little evidence of hemorrhage at these early times after implantation, whereas, after longer periods of growth, enhanced angiogenicity and tumorigenicity were apparent. There was rapid blood vessel growth and breakdown around the tumors caused by cells overexpressing VEGF121 and VEGF165, whereas there was similar vascularization but no eruption in the vicinity of those tumors caused by cells overexpressing VEGF189, and none on the border of the tumors caused by the parental cells. Thus, by introducing VEGF-overexpressing glioblastoma cells into the brain, we have established a reproducible and predictable in vivo model of tumor-associated intracerebral hemorrhage caused by the enhanced expression of single molecular species. Such a model should be useful for uncovering the role of VEGF isoforms in the mechanisms of angiogenesis and for investigating intracerebral hemorrhage due to ischemic stroke or congenital malformations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vascular endothelial growth factor C (VEGF-C) recently has been described to be a relatively specific growth factor for the lymphatic vascular system. Here we report that ectopic application of recombinant VEGF-C also has potent angiogenic effects in vivo. VEGF-C is sufficiently potent to stimulate neovascularization from limbal vessels in the mouse cornea. Similar to VEGF, the angiogenic response of corneas induced by VEGF-C is intensive, with a high density of new capillaries. However, the outgrowth of microvessels stimulated by VEGF-C was significantly longer than that induced by VEGF. In the developing embryo, VEGF-C was able to induce branch sprouts from the established blood vessels. VEGF-C also induced an elongated, spindle-like cell shape change and actin reorganization in both VEGF receptor (VEGFR)-2 and VEGFR-3-overexpressing endothelial cells, but not in VEGFR-1-expressing cells. Further, both VEGFR-2 and VEGFR-3 could mediate proliferative and chemotactic responses in endothelial cells on VEGF-C stimulation. Thus, VEGF-C may regulate physiological angiogenesis and participate in the development and progression of angiogenic diseases in addition to lymphangiogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hyperpermeability of tumor vessels to macromolecules, compared with normal vessels, is presumably due to vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) released by neoplastic and/or host cells. In addition, VEGF/VPF is a potent angiogenic factor. Removal of this growth factor may reduce the permeability and inhibit tumor angiogenesis. To test these hypotheses, we transplanted a human glioblastoma (U87), a human colon adenocarcinoma (LS174T), and a human melanoma (P-MEL) into two locations in immunodeficient mice: the cranial window and the dorsal skinfold chamber. The mice bearing vascularized tumors were treated with a bolus (0.2 ml) of either a neutralizing antibody (A4.6.1) (492 μg/ml) against VEGF/VPF or PBS (control). We found that tumor vascular permeability to albumin in antibody-treated groups was lower than in the matched controls and that the effect of the antibody was time-dependent and influenced by the mode of injection. Tumor vascular permeability did not respond to i.p. injection of the antibody until 4 days posttreatment. However, the permeability was reduced within 6 h after i.v. injection of the same amount of antibody. In addition to the reduction in vascular permeability, the tumor vessels became smaller in diameter and less tortuous after antibody injections and eventually disappeared from the surface after four consecutive treatments in U87 tumors. These results demonstrate that tumor vascular permeability can be reduced by neutralization of endogenous VEGF/VPF and suggest that angiogenesis and the maintenance of integrity of tumor vessels require the presence of VEGF/VPF in the tissue microenvironment. The latter finding reveals a new mechanism of tumor vessel regression—i.e., blocking the interactions between VEGF/VPF and endothelial cells or inhibiting VEGF/VPF synthesis in solid tumors causes dramatic reduction in vessel diameter, which may block the passage of blood elements and thus lead to vascular regression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vascular endothelial growth factor (VEGF) mediates angiogenic activity in a variety of estrogen target tissues. To determine whether estrogen has a direct transcriptional effect on VEGF gene expression, we developed a model system by transiently transfecting human VEGF promoter-luciferase reporter constructs into primary human endometrial cells and into Ishikawa cells, derived from a well-differentiated human endometrial adenocarcinoma. In primary endometrial epithelial cells, treatment with 17β-estradiol (E2) resulted in a 3.8-fold increase in luciferase activity, whereas a 3.2-fold induction was demonstrated for stromal cells. Our Ishikawa cells had less than 100 functional estrogen receptors (ER)/cell and were therefore cotransfected with expression vectors encoding either the α- or the β-form of the human ER. In cells cotransfected with ERα, E2 induced 3.2-fold induction in VEGF-promoter luciferase activity. A 2.3-fold increase was observed in cells cotransfected with ERβ. Through specific deletions, the E2 response was restricted to a single 385-bp PvuII-SstI fragment in the 5′ flanking DNA. Cotransfection of this upstream region with a DNA binding domain ER mutant, or site-directed mutagenesis of a variant ERE within this fragment, resulted in the loss of the E2 response. Electromobility shift assays demonstrated that this same ERE sequence specifically binds estradiol-ER complexes. These studies demonstrate that E2-regulated VEGF gene transcription requires a variant ERE located 1.5 kb upstream from the transcriptional start site. Site-directed mutagenesis of this ERE abrogated E2-induced VEGF gene expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vascular endothelial growth factor (VEGF) is a hypoxia-inducible angiogenic peptide with recently identified neurotrophic effects. Because some neurotrophic factors can protect neurons from hypoxic or ischemic injury, we investigated the possibility that VEGF has similar neuroprotective properties. In HN33, an immortalized hippocampal neuronal cell line, VEGF reduced cell death associated with an in vitro model of cerebral ischemia: at a maximally effective concentration of 50 ng/ml, VEGF approximately doubled the number of cells surviving after 24 h of hypoxia and glucose deprivation. To investigate the mechanism of neuroprotection by VEGF, the expression of known target receptors for VEGF was measured by Western blotting, which showed that HN33 cells expressed VEGFR-2 receptors and neuropilin-1, but not VEGFR-1 receptors. The neuropilin-1 ligand placenta growth factor-2 failed to reproduce the protective effect of VEGF, pointing to VEGFR-2 as the site of VEGF's neuroprotective action. Two phosphatidylinositol 3′-kinase inhibitors, wortmannin and LY294002, reversed the neuroprotective effect of VEGF, implicating the phosphatidylinositol 3′-kinase/Akt signal transduction system in VEGF-mediated neuroprotection. VEGF also protected primary cultures of rat cerebral cortical neurons from hypoxia and glucose deprivation. We conclude that in addition to its known role as an angiogenic factor, VEGF may exert a direct neuroprotective effect in hypoxic-ischemic injury.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sequence of events that leads to tumor vessel regression and the functional characteristics of these vessels during hormone–ablation therapy are not known. This is because of the lack of an appropriate animal model and monitoring technology. By using in vivo microscopy and in situ molecular analysis of the androgen-dependent Shionogi carcinoma grown in severe combined immunodeficient mice, we show that castration of these mice leads to tumor regression and a concomitant decrease in vascular endothelial growth factor (VEGF) expression. Androgen withdrawal is known to induce apoptosis in Shionogi tumor cells. Surprisingly, tumor endothelial cells begin to undergo apoptosis before neoplastic cells, and rarefaction of tumor vessels precedes the decrease in tumor size. The regressing vessels begin to exhibit normal phenotype, i.e., lower diameter, tortuosity, vascular permeability, and leukocyte adhesion. Two weeks after castration, a second wave of angiogenesis and tumor growth begins with a concomitant increase in VEGF expression. Because human tumors often relapse following hormone–ablation therapy, our data suggest that these patients may benefit from combined anti-VEGF therapy.