932 resultados para Vaccine, Ross River virus, Immunisation, Passive, Antibody dependent enhancement


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To test the hypothesis that measles vaccination was involved in the pathogenesis of autism spectrum disorders (ASD) as evidenced by signs of a persistent measles infection or abnormally persistent immune response shown by circulating measles virus or raised antibody titres in children with ASD who had been vaccinated against measles, mumps and rubella (MMR) compared with controls. Design: Case-control study, community based. Methods: A community sample of vaccinated children aged 10-12 years in the UK with ASD (n = 98) and two control groups of similar age, one with special educational needs but no ASD (n = 52) and one typically developing group (n = 90), were tested for measles virus and antibody response to measles in the serum. Results: No difference was found between cases and controls for measles antibody response. There was no dose-response relationship between autism symptoms and antibody concentrations. Measles virus nucleic acid was amplified by reverse transcriptase-PCR in peripheral blood mononuclear cells from one patient with autism and two typically developing children. There was no evidence of a differential response to measles virus or the measles component of the MMR in children with ASD, with or without regression, and controls who had either one or two doses of MMR. Only one child from the control group had clinical symptoms of possible enterocolitis. Conclusion: No association between measles vaccination and ASD was shown.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Mealybugs (Hemiptera: Coccoidea: Pseudococcidae) are key vectors of badnaviruses, including Cacao Swollen Shoot Virus (CSSV) the most damaging virus affecting cacao (Theobroma cacao L.). The effectiveness of mealybugs as virus vectors is species dependent and it is therefore vital that CSSV resistance breeding programmes in cacao incorporate accurate mealybug identification. In this work the efficacy of a CO1-based DNA barcoding approach to species identification was evaluated by screening a range of mealybugs collected from cacao in seven countries. RESULTS: Morphologically similar adult females were characterised by scanning electron microscopy and then, following DNA extraction, were screened with CO1 barcoding markers. A high degree of CO1 sequence homology was observed for all 11 individual haplotypes including those accessions from distinct geographical regions. This has allowed for the design of a High Resolution Melt (HRM) assay capable of rapid identification of the commonly encountered mealybug pests of cacao. CONCLUSIONS: HRM Analysis (HRMA) readily differentiated between mealybug pests of cacao that can not necessarily be identified by conventional morphological analysis. This new approach, therefore, has potential to facilitate breeding for resistance to CSSV and other mealybug transmitted diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Pieman River catchment has seen continuous mining of economic deposits of gold, silver, lead, copper, zinc and tin since the 1870’s. Tributaries of this river which receive mining effluent, either directly or from acid mine drainage (AMID), have total metal concentrations considerably above background levels and are of regulatory concern. The lower Pieman River is however classified as a State Reserve in which recreational fishing and tourism are the major activities. It is therefore important that water entering the lower Pieman River from upstream hydroelectric impoundments is of high quality. Metals in natural waters exist in a variety of dissolved, colloidal and particulate forms. The bioavailability and hence toxicity of heavy metal pollutants is very dependant on their physico form. Knowledge of the speciation of a metal in natural aquatic environments is therefore necessary for understanding its geochemical behaviour and biological availability. Complexation of metal ions by natural ligands in aquatic systems is believed to play a significant role in controlling their chemical speciation. This study has investigated temporal and spatial variation in complexation of metal ions in the Pieman River. The influence of pH, temperature, organic matter, salinity, ionic strength and time has been investigated in a series of field studies and in laboratory-based experiments which simulated natural and anthropogenic disturbances. Labile metals were measured using two techniques in various freshwater and estuarine environments. Diffusive gradients in thin-films (DGT) allowed in situ measurement of solution speciation whilst differential pulse anodic stripping voltammetry (DPASV) was used to measure labile metal species in water samples collected from the catchment. Organic complexation was found to be a significant regulating mechanism for copper speciation and the copper-binding ligand concentration usually exceeded the total copper concentration in the river water. Complexation was highly dependent on pH and at the river-seawater interface was also regulated by salinity, probably as a result of competitive complexation by major ions in seawater (eg. Ca 2+ ions). Zinc complexation was also evident, however total zinc concentrations in the water column often far exceeded the potential binding capacity of available ligands. In addition to organic complexation, Zn speciation may also be associated with adsorption by flocculated or resuspended colloidal Mn and/or Fe oxyhydroxides. Metal ion complexation and hence speciation was found to be highly variable within the Pieman River catchment. This presents major difficulties for environmental managers, as it is therefore not possible to make catchment-wide assumptions about the bioavailability of these metals. These results emphasise the importance of site-specific sampling protocols and speciation testing, ideally incorporating continuous, in situ monitoring.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wildlife pathogens can alter host fitness. Low pathogenic avian influenza virus (LPAIV) infection is thought to have negligible impacts on wild birds; however, effects of infection in free-living birds are largely unstudied. We investigated the extent to which LPAIV infection and shedding were associated with body condition and immune status in free-living mallards (Anas platyrhynchos), a partially migratory key LPAIV host species. We sampled mallards throughout the species' annual autumn LPAIV infection peak, and we classified individuals according to age, sex, and migratory strategy (based on stable hydrogen isotope analysis) when analyzing data on body mass and five indices of immune status. Body mass was similar for LPAIV-infected and noninfected birds. The degree of virus shedding from the cloaca and oropharynx was not associated with body mass. LPAIV infection and shedding were not associated with natural antibody (NAbs) and complement titers (first lines of defense against infections), concentrations of the acute phase protein haptoglobin (Hp), ratios of heterophils to lymphocytes (H:L ratio), and avian influenza virus (AIV)-specific antibody concentrations. NAbs titers were higher in LPAIV-infected males and local (i.e., short distance) migrants than in infected females and distant (i.e., long distance) migrants. Hp concentrations were higher in LPAIV-infected juveniles and females compared to infected adults and males. NAbs, complement, and Hp levels were lower in LPAIV-infected mallards in early autumn. Our study demonstrates weak associations between infection with and shedding of LPAIV and the body condition and immune status of free-living mallards. These results may support the role of mallards as asymptomatic carriers of LPAIV and raise questions about possible coevolution between virus and host.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ten young partridges (Rhynchotus rufescens) were vaccinated with the lentogenic strain of Newcastle disease virus. Another eight unvaccinated birds were kept in close contact with the treated flock. Antibodies levels were measured over the course of 3 mo in all birds using the hemagglutination inhibition (HI) test and the liquid-phase blocking enzyme-linked immunosorbent assay (LPB-ELISA). The LPB-ELISA was standardized, and the results were compared with those obtained with the HI test. Antibodies increased after 23 days postvaccination in 16 birds with no side effects as determined by both the HI test and the LPB-ELISA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The merozoite surface protein-2 (MSP-2) of Plasmodium falciparum comprises repeats flanked by dimorphic domains defining the allelic families FC27 and IC1. Here, we examined sequence diversity at the msp-2 locus in Brazil and its impact on MSP-2 antibody recognition by local patients. Only 25 unique partial sequences of msp-2 were found in 61 isolates examined. The finding of identical msp-2 sequences in unrelated parasites, collected 6-13 years apart, suggests that no major directional selection is exerted by variant-specific immunity in this malaria-endemic area. To examine antibody cross-reactivity, recombinant polypeptides derived from locally prevalent and foreign MSP-2 variants were used in ELISA. Foreign IC1-type variants, such as 3D7 (currently tested for human vaccination), were less frequently recognized than FC27-type and local IC1-type variants. Antibodies discriminated between local and foreign IC1-type variants, but cross-recognized structurally different local IC1-type variants. The use of evolutionary models of MSP-2 is suggested to design vaccines that minimize differences between local parasites and vaccine antigens. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Developing vaccines to prevent the establishment of HIV infection has been fraught with difficulties. It might therefore be important to consider other new strategies. Since several studies suggest that anti-inflammatory stimuli can protect from HIV infection and because HIV replicates preferably in activated T cells, we suggest here that the reduction of immune activation through a HIV-specific regulatory T-cell vaccine might thwart early viral replication. Thus, because immune activation is a good predictor of disease progression and the immune activation set point has been shown to be an early event during HIV infection, vaccinating to achieve control of early virus-specific immune activation might be advantageous.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Millions of people worldwide are currently infected with human papillomavirus (HPV), herpes simplex virus (HSV) or human immunodeficiency virus (HIV). For this enormous contingent of people, the search for preventive and therapeutic immunological approaches represents a hope for the eradication of latent infection and/or virus-associated cancer. To date, attempts to develop vaccines against these viruses have been mainly based on a monovalent concept, in which one or more antigens of a virus are incorporated into a vaccine formulation. In the present report, we designed and tested an immunization strategy based on DNA vaccines that simultaneously encode antigens for HIV, HSV and HPV. With this purpose in mind, we tested two bicistronic DNA vaccines (pIRES I and pIRES II) that encode the HPV-16 oncoprotein E7 and the HIV protein p24 both genetically fused to the HSV-1 gD envelope protein. Mice i.m. immunized with the DNA vaccines mounted antigen-specific CD8⁺ T cell responses, including in vivo cytotoxic responses, against the three antigens. Under experimental conditions, the vaccines conferred protective immunity against challenges with a vaccinia virus expressing the HIV-derived protein Gag, an HSV-1 virus strain and implantation of tumor cells expressing the HPV-16 oncoproteins. Altogether, our results show that the concept of a trivalent HIV, HSV, and HPV vaccine capable to induce CD8⁺ T cell-dependent responses is feasible and may aid in the development of preventive and/or therapeutic approaches for the control of diseases associated with these viruses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protective immunity against Plasmodium falciparum may be obtained after repeated exposure to infection. Several studies indicate that immunity against the blood stages of the P. Falciparum infection is mainly antibody mediated. Protective antibodies may act either on their own, mediate antibody-dependent phagocytosis and/or cell-mediated neutralization of parasites. This thesis describes several aspects of humoral immune responses to P. falciparum infection in individuals of different age groups, different genetic background and with different degrees of malaria exposure. Several target antigens for antibody-mediated inhibition of parasite growth or invasion have been identified. One such antigen is Pf332, which appears on the surface of parasitized erythrocytes at late trophozoite and schizont stage. This surface exposure makes the antigen a possible target for opsonizing antibodies. We optimized an in vitro assay for studying cellmediated parasite neutralization in the presence of Pf332-reactive antibodies. Our data demonstrate that, Pf332 specific antibodies are able to inhibit parasite growth on their own and in cooperation with human monocytes. The P. falciparum parasites have evolved several mechanisms to evade the host neutralizing immune responses. In this thesis, we show that freshly isolated P. falciparum parasites from children living in a malaria endemic area of Burkina Faso were less sensitive for growth inhibition in vitro by autologous immunoglobulins (Ig) compared with heterologous ones. Analyses of two consecutive isolates taken 14 days apart, with regard to genotypes and sensitivity to growth inhibition in vitro, did not give any clear-cut indications on possible mechanisms leading to a reduced inhibitory activity in autologous parasite/antibody combinations. The frequent presence of persisting parasite clones in asymptomatic children indicates that the parasite possesses as yet undefined mechanisms to evade neutralizing immune responses. Transmission reducing measures such insecticide treated nets (ITNs) have been shown to be effective in reducing morbidity and mortality from malaria. However, concerns have been raised that ITNs usage could affect the acquisition of malaria immunity. We studied the effect of the use of insecticide treated curtains (ITC) on anti-malarial immune responses of children living in villages with ITC since birth. The use of ITC did neither affect the levels of parasite neutralizing immune responses nor the multiplicity of infection. These results indicate that the use of ITC does not interfere with the acquisition of anti-malarial immunity in children living in a malaria hyperendemic area. There is substantial evidence that the African Fulani tribe is markedly less susceptible to malaria infection compared to other sympatrically living ethnic tribes. We investigated the isotypic humoral responses against P. falciparum asexual blood stages in different ethnic groups living in sympatry in two countries exhibiting different malaria transmission intensities, Burkina Faso and Mali. We observed higher levels of the total malaria-specific-IgG and its cytophilic subclasses in individuals of the Fulani tribe as compared to non-Fulani individuals. Fulani individuals also showed higher levels of antibodies to measles antigen, indicating that the intertribal differences are not specific for malaria and might reflect a generally activated immune system in the Fulani.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Triplex cell vaccine is a cancer immunopreventive cell vaccine that can prevent almost completely mammary tumor onset in HER-2/neu transgenic mice. A future translation of cancer immunoprevention from preclinical to clinical studies should take into account several aspects. The work reported in this thesis deals with the study of three of these aspects: vaccine schedule, activity in a therapeutic set-up and second-generation DNA vaccines. An important element in determining human acceptance and compliance of a treatment protocol is the number of vaccinations. In order to improve the vaccination schedule a minimal protocol was searched, i.e. a schedule consisting of a lower number of administrations than standard protocol but with a similar efficacy. A candidate optimal protocol was identified by the use of an in silico model, SimTriplex simulator. The in vivo test of this schedule in HER-2/neu transgenic mice only partially confirmed in silico predictions. This result shows that in silico models have the potential ability to aid in searching of optimal treatment protocols, provided that they will be further tuned on experimental data. As a further result this preclinical study highlighted that kinetic of antibody response plays a major role in determining cancer prevention, leading to the hypothesis of a threshold that must be reached rapidly and maintained lifetime. Early clinical trials would be performed in a therapeutic, rather than preventive, setting. Thus, the activity of Triplex vaccine was investigated against experimental lung metastases in HER-2/neu transgenic mice in order to evaluate if the immunopreventive Triplex vaccine could be effective also against a pre-existing tumor mass. This preclinical model of aggressive metastatic development showed that the vaccine was an efficient treatment also 4 for the cure of micrometastases. However the immune mechanisms activated against tumor mass were not antibody dependent, i.e. different from those preventing the onset of primary mammary carcinoma. DNA vaccines could be more easily used than cellular ones. A second generation of Triplex vaccine based on DNA plasmids was evaluated in an aggressive preclinical model (BALBp53neu female mice) and compared with the preventive ability of cellular Triplex vaccine. It was observed that Triplex DNA vaccine was as effective as Triplex cell vaccine, exploiting a more restricted immune stimulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mycobacterium tuberculosis, the causative agent of tuberculosis, is the most lethal single infectious agent afflicting man today causing 2 million deaths per year. The World Health Organization recommends a vaccine as the best option to prevent this disease. The current vaccine, BCG, has a variable efficacy and does not protect adults. It is known that BCG vaccine becomes sequestered in special phagosome compartments of macrophages that do not fuse with lysosomes. Since lysosome fusion is necessary for peptide production and T cell priming leading to protective TH1 immunity, we hypothesized that vaccine efficacy is reduced and occurs perhaps due to non-lysosome dependent mechanisms. We therefore proposed an in depth analysis of phagosome environment, and its proteome to unravel mechanisms of antigen processing and presentation. We initially discovered that three mechanisms of pH regulation including vacuolar proton ATPase, phagocyte oxidase and superoxide dismutase (SOD) secretion from BCG vaccine affect antigen processing within phagosomes. These studies led to the discovery that a mutant of BCG vaccine which lacked SOD was a better vaccine. Subsequently, the proteomic analysis of vaccine phagosomes led to the discovery of novel protease (γ-secretase) enriched on BCG vaccine phagosomes. We then demonstrated that these proteases generated a peptide from the BCG vaccine which was presented through the MHC-II pathway to T cells and induced a TH1 response. The specificity of antigen production from γ-secretase was confirmed through siRNA knockdown of the components of the protease namely, nicastrin, presenilin and APH, which led to a decrease in antigen presentation. We therefore conclude that, even though BCG phagosomes are sequestered and do not fuse with lysosomes to generate peptide antigens, there are complex and novel in situ mechanisms within phagosomes that are capable of generating an immune response. We conclude that TH1 immunity to BCG vaccine arises mostly due to non-lysosome dependent immune mechanisms of macrophages and dendritic cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human colon cancer cells, LS180 and 174T, exhibit monoclonal antibody (mAb) 1083-17-1A and 5E113 defined tumor associated antigens. By radioimmunoassay, LS180 cells expressed the highest amount of mAb1083 defined antigens among the cell lines tested. Another mAb, 5E113, competed with mAb1083 for binding to LS180 cells, suggesting that both mAbs might bind onto identical (or adjacent) epitopes. By Scatchard analysis, about one million copies of the epitopes were present on LS180 colon cancer cells. The affinity of mAb1083 binding to the cells was 2.97 x 10('10) M('-1); the Sipsian heteroclonality value of mAb1083 was 0.9, thus approximating a single clone of reactive antibody. The qualitative studies showed that the epitopes were probably not carbohydrate because of their sensitivity to proteinases and not to mixed glucosidases and neuraminidase. The tunicamycin homologue B(,2) inhibited the incoporation of ('3)H-labeled galactose but not uptake of ('35)S-labeled methionine, nor expression of monoclonal antibody defined antigens providing further evidence to exclude the possibility of carbohydrate epitopes. There was evidence that the epitope might be partially masked in its "native" conformation, since short exposure or low dose treatment with proteases increased mAbs binding. The best detergent for antigen extraction, as detected by dot blotting and competitive inhibition assays, was octylglucoside at 30 mM concentration. Three methods, immunoprecipitation, Western blotting and photoaffinity labeling, were used to determine the molecular nature of the antigens. These results demonstrated that the antibody bound both 43 K daltons (KD) and 22 KD proteins.^ An in vitro cell-mediated immune approach was also used to attempt identifying function for the antigens. The strategy was to use mAbs to block cytotoxic effector cell killing. However, instead of blocking, the mAb1083 and 5E113 showed strong antibody-dependent cell-mediated cytotoxicities (ADCCs) in the in vitro xenoimmune assay system. In addition, cytotoxic T lymphocytes (CTLs), natural killer cells, and K cell activity were found. Since even the F(ab')2 fragment of mAbs did not inhibit the cytolytic effect, the mAbs defined antigens may not be major target molecules for CTLs. In summary, two molecular species of tumor antigen(s) were identified by mAbs to be present on colon tumor cell lines, LS180 and LS174T. (Abstract shortened with permission of author.) ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intravenous immunoglobulin (IVIG) is the first line treatment for Guillain–Barré syndrome and multifocal motor neuropathy, which are caused by anti-ganglioside antibody-mediated complement-dependent cytotoxicity. IVIG has many potential mechanisms of action, and sialylation of the IgG Fc portion reportedly has an anti-inflammatory effect in antibody-dependent cell-mediated cytotoxicity models. We investigated the effects of different IVIG glycoforms on the inhibition of antibody-mediated complement-dependent cytotoxicity. Deglycosylated, degalactosylated, galactosylated and sialylated IgG were prepared from IVIG following treatment with glycosidases and glycosyltransferases. Sera from patients with Guillain–Barré syndrome, Miller Fisher syndrome and multifocal motor neuropathy associated with anti-ganglioside antibodies were used. Inhibition of complement deposition subsequent to IgG or IgM autoantibody binding to ganglioside, GM1 or GQ1b was assessed on microtiter plates. Sialylated and galactosylated IVIGs more effectively inhibited C3 deposition than original IVIG or enzyme-treated IVIGs (agalactosylated and deglycosylated IVIGs). Therefore, sialylated and galactosylated IVIGs may be more effective than conventional IVIG in the treatment of complement-dependent autoimmune diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the past 6 years, a number of zoonotic and vectorborne viral diseases have emerged in Southeast Asia and the Western Pacific. Vectorborne disease agents discussed in this article include Japanese encephalitis, Barmah Forest, Ross River, and Chikungunya viruses. However, most emerging viruses have been zoonotic, with fruit bats, including flying fox species as the probable wildlife hosts, and these will be discussed as well. The first of these disease agents to emerge was Hendra virus, formerly called equine morbillivirus. This was followed by outbreaks caused by a rabies-related virus, Australian bat lyssavirus, and a virus associated with porcine stillbirths and malformations, Menangle virus. Nipah virus caused an outbreak of fatal pneumonia in pigs and encephalitis in humans in the Malay Peninsula. Most recently, Tioman virus has been isolated from flying foxes, but it has not yet been associated with animal or human disease. Of nonzoonotic viruses, the most important regionally have been enterovirus 71 and HIV.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. Multiple low doses of streptozotocin (MSZ) treatment successfully induced diabetes in male TO, MFI and HO lean mice. In contrast however, BALB/c mice failed to develop persistent hyperglycaemia. Single streptozotocin (SSZ) treatment also produced diabetes in TO mice. SSZ treatment however, produced severe weight loss and atrophy of the lymphoid organs. MSZ treatment on the other hand, was not cytotoxic towards lymphoid organs and, whilst there was no loss of body weight, growth rates were reduced in MSZ treated mice. 2. Following sheep red blood cell (SRBC) immunisation of MSZ-treated mice, haemagglutination titres, and numbers of antigen reactive cells and plaque forming cells were all significantly lower than control values. 3. In vitro proliferation of spleen cells in response to phytohaemagglutinin (PHA) and conconavalin A (ConA) was found to be significantly depressed in MSZ treated mice. However, T-lymphocyte responses were intact when the mice were not overtly hyperglycaemic. In contrast, however, T cell independent responses to lipopolysaccharide (LPS) were generally intact throughout the study period. 4. Cell mediated immunity, as assessed by measurements of delayed (Type IV) hypersensitivity, was also depressed in MSZ treated mice. This suppression could be reversed by insulin therapy. 5. Both natural killer cell activity and antibody dependent cell mediated cytotoxicity were found to be significantly increased in MSZ treated mice. 6. Histological examination of the pancreas showed the presence of insulitis, in MSZ treated mice, and cytotoxic effector cells against obese mice islet cells (as assessed by 51Cr release) and HIT-T15 cells (as assessed by insulin secretion) were found to be significantly increased. Furthermore, these effector cells were also found to show increased proliferation in the presence of homogenates prepared from HIT-T15 cells. Examination of the Sera from MSZ treated mice showed that islet cell surface antibodies were present.