993 resultados para VISCOPLASTIC HETEROGENEOUS MATERIALS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Grain size is one of the most important microstructural characteristics determining the mechanical properties and therefore the service performance of polycrystalline materials. Heterogeneous nucleation involves the addition or in situ formation of potent nuclei in the system to promote nucleation events, leading to a fine grain structure. This paper reports experimental results using graphite and SiC as potential grain refining agents to form in situ nuclei for Mg in Mg-Al alloys, and demonstrates the key role of Al4C3 in grain refilling this important alloy system. This insight will contribute to the design and development of the most cost effective, eco-friendly grain refining agents for Mg-Al alloys. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The quest for energy security and widespread acceptance of the anthropogenic origin of rising CO2 emissions and associated climate change from combusting fossil derived carbon sources, is driving academic and commercial research into new routes to sustainable fuels to meet the demands of a rapidly rising global population. Biodiesel is one of the most readily implemented and low cost, alternative source of transportation fuels to meet future societal demands. However, current practises to produce biodiesel via transesterification employing homogeneous acids and bases result in costly fuel purification processes and undesired pollution. Life-cycle calculations on biodiesel synthesis from soybean feedstock show that the single most energy intensive step is the catalytic conversion of TAGs into biodiesel, accounting for 87% of the total primary energy input, which largely arises from the quench and separation steps. The development of solid acid and base catalysts that respectively remove undesired free fatty acid (FFA) impurities, and transform naturally occurring triglycerides found within plant oils into clean biodiesel would be desirable to improve process efficiency. However, the microporous nature of many conventional catalysts limits their ability to convert bulky and viscous feeds typical of plant or algal oils. Here we describe how improved catalyst performance, and overall process efficiency can result from a combination of new synthetic materials based upon templated solid acids and bases with hierarchical structures, tailored surface properties and use of intensified process allowing continuous operation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Concerns over dwindling oil reserves, carbon dioxide emissions from fossil fuel sources and associated climate change is driving the urgent need for clean, renewable energy supplies. The conversion of triglycerides to biodiesel via catalytic transesterification remains an energetically efficient and attractive means to generate transportation fuel1. However, current biodiesel manufacturing routes employing soluble alkali based catalysts are very energy inefficient producing copious amounts of contaminated water waste during fuel purification. Technical advances in catalyst and reactor design and introduction of non-food based feedstocks are thus required to ensure that biodiesel remains a key player in the renewable energy sector for the 21st century. This presentation will give an overview of some recent developments in the design of solid acid and base catalysts for biodiesel synthesis. A particular focus will be on the benefits of designing materials with interconnected hierarchical macro-mesoporous networks to enhance mass-transport of viscous plant oils during reaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A temperature and strain rate dependent yield surface model was proposed to characterize the viscoplastic yielding of asphalt concrete. Laboratory tests were conducted on specimens that have two binders, two air void contents, and three aging periods. Strain decomposition was performed to obtain viscoplastic strain and stress-pseudostrain curves were constructed to determine the model parameters accurately and efficiently. Results indicate that a stiffer asphalt concrete has greater cohesion and strain hardening amplitude, both of which decline as temperature increases or strain rate decreases. The temperature and strain rate factors of the yield surface can be accurately determined solely by the peak stress of the strength tests. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A generalized Drucker–Prager (GD–P) viscoplastic yield surface model was developed and validated for asphalt concrete. The GD–P model was formulated based on fabric tensor modified stresses to consider the material inherent anisotropy. A smooth and convex octahedral yield surface function was developed in the GD–P model to characterize the full range of the internal friction angles from 0° to 90°. In contrast, the existing Extended Drucker–Prager (ED–P) was demonstrated to be applicable only for a material that has an internal friction angle less than 22°. Laboratory tests were performed to evaluate the anisotropic effect and to validate the GD–P model. Results indicated that (1) the yield stresses of an isotropic yield surface model are greater in compression and less in extension than that of an anisotropic model, which can result in an under-prediction of the viscoplastic deformation; and (2) the yield stresses predicted by the GD–P model matched well with the experimental results of the octahedral shear strength tests at different normal and confining stresses. By contrast, the ED–P model over-predicted the octahedral yield stresses, which can lead to an under-prediction of the permanent deformation. In summary, the rutting depth of an asphalt pavement would be underestimated without considering anisotropy and convexity of the yield surface for asphalt concrete. The proposed GD–P model was demonstrated to be capable of overcoming these limitations of the existing yield surface models for the asphalt concrete.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sustainability has become a watchword and guiding principle for modern society, and with it a growing appreciation that anthropogenic 'waste', in all its manifold forms, can offer a valuable source of energy, construction materials, chemicals and high value functional products. In the context of chemical transformations, waste materials not only provide alternative renewable feedstocks, but also a resource from which to create catalysts. Such waste-derived heterogeneous catalysts serve to improve the overall energy and atom-efficiency of existing and novel chemical processes. This review outlines key chemical transformations for which waste-derived heterogeneous catalysts have been developed, spanning biomass conversion to environmental remediation, and their benefits and disadvantages relative to conventional catalytic technologies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of cost-effective and reliable methods for the synthesis and separation of asymmetric compounds is paramount in helping to meet society’s ever-growing demand for chiral small molecules. Of these methods, chiral heterogeneous supports are particularly appealing as they allow for the reuse of the chiral source. One such support, based on the synergy between chiral organic units and structurally stable inorganic silicon scaffolds are periodic mesoporous organosilicas (PMOs). In the work described herein, I examine some of the factors governing the transmission of chirality between chiral dopants and prochiral bulk phases in chiral PMO materials. In particular, the exploration of 1,1’-binaphthalene-bridged chiral dopants with a focus on the point of attachment into the materials. Moreover, the effects of ordering in the materials are examined and reveal that chirality transfer is more facile in materials with molecular-scale order then those containing amorphous walls. Secondly, the issues surrounding the synthesis and purification of aryl-triethoxysilanes as siloxane precursors are addressed. Both the introduction of a two-carbon linker and the direct attachment of allyl and mixed allyldiethoxysilane species are explored. This work demonstrates that allyldiethoxysilanes are ideal, in that they are stable enough to permit facile synthesis, while still being able to hydrolyze completely to produce well-ordered materials. Lastly, the production of new bulk phases for chiral PMO materials is examined by introducing new prochiral nitrogen-containing siloxane precursors. Biphenyldiamine and bipyridine-bridged siloxane precursors are readily synthesized on reasonable scales. Their use as the bulk siloxane precursor in the production of PMO materials however, is precluded by insufficient gelation and additional siloxane precursors are necessary for the production of ordered materials. In addition to the research detailed above that forms the body of this thesis, two short works are appended. The first details the production of polythiophene assemblies mediated through coordination nanospaces, while the second explores the production of N-heterocyclic carbene functionalized gold nanoparticles through ligand exchange.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The complexities of evaporation from structurally and mineralogically heterogeneous sandstone (Locharbriggs Sandstone) are investigated through a laboratory-based experiment in which a variety of environmental conditions are simulated. Data reported demonstrate the significance of material-environment interactions on the spatial and temporal variability of evaporative dynamics. Evaporation from porous stone is determined by the interplay between environmental, material and solution properties, which govern the rate and mode by which water is transmitted to, and subsequently removed from, an evaporating surface. Initially evaporation is marked by high rates of moisture loss controlled by external atmospheric conditions; then, when a critical level of surface moisture content is reached, hydraulic continuity between the stone surface and subsurface is disrupted and the drying front recedes
beneath the surface, evaporation rates decrease and are controlled by the ability of the material to transport water vapour to the surface. Pore size distribution and connectivity, as well as other material properties, control the timing of each stage of evaporation and the nature of the transition.

These experimental data highlight the complexity of evaporation, demonstrating that different regions of the same stone can exhibit varying moisture dynamics during drying and that the rate and nature of evaporative loss differs under different environmental conditions. The results identify the importance of material-environment interactions during drying and that stone micro-environmental conditions cannot be inferred from ambient data alone.
These data have significance for understanding the spatial distribution of stone surface weathering-related morphologies in both the natural and built environments where mineralogical and/or structural heterogeneity creates differences in moisture flux and hence variable drying rates. Such differences may provide a clearer explanation for the initiation and subsequent development of complex weathering responses where areas of significant deterioration can be found alongside areas that exhibit little or no evidence surface breakdown.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Faraday Discussion on the design of new heterogeneous catalysts took place from 4-6 April 2016 in London, United Kingdom. It brought together world leading scientists actively involved in the synthesis, characterisation, modelling and testing of solid catalysts, attracting more than one hundred delegates from a broad spectrum of backgrounds and experience levels-academic and industrial researchers, experimentalists and theoreticians, and students. The meeting was a reflection of how big of an impact the ability to control and design catalysts with specific properties for particular processes can potentially have on the chemical industry, environment, economy and society as a whole. In the following, we give an overview of the topics covered during this meeting and briefly highlight the content of each presentation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Colloid self-assembly under external control is a new route to fabrication of advanced materials with novel microstructures and appealing functionalities. The kinetic processes of colloidal self-assembly have attracted great interests also because they are similar to many atomic level kinetic processes of materials. In the past decades, rapid technological progresses have been achieved on producing shape-anisotropic, patchy, core-shell structured particles and particles with electric/magnetic charges/dipoles, which greatly enriched the self-assembled structures. Multi-phase carrier liquids offer new route to controlling colloidal self-assembly. Therefore, heterogeneity is the essential characteristics of colloid system, while so far there still lacks a model that is able to efficiently incorporate these possible heterogeneities. This thesis is mainly devoted to development of a model and computational study on the complex colloid system through a diffuse-interface field approach (DIFA), recently developed by Wang et al. This meso-scale model is able to describe arbitrary particle shape and arbitrary charge/dipole distribution on the surface or body of particles. Within the framework of DIFA, a Gibbs-Duhem-type formula is introduced to treat Laplace pressure in multi-liquid-phase colloidal system and it obeys Young-Laplace equation. The model is thus capable to quantitatively study important capillarity related phenomena. Extensive computer simulations are performed to study the fundamental behavior of heterogeneous colloidal system. The role of Laplace pressure is revealed in determining the mechanical equilibrium of shape-anisotropic particles at fluid interfaces. In particular, it is found that the Laplace pressure plays a critical role in maintaining the stability of capillary bridges between close particles, which sheds light on a novel route to in situ firming compact but fragile colloidal microstructures via capillary bridges. Simulation results also show that competition between like-charge repulsion, dipole-dipole interaction and Brownian motion dictates the degree of aggregation of heterogeneously charged particles. Assembly and alignment of particles with magnetic dipoles under external field is studied. Finally, extended studies on the role of dipole-dipole interaction are performed for ferromagnetic and ferroelectric domain phenomena. The results reveal that the internal field generated by dipoles competes with external field to determine the dipole-domain evolution in ferroic materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this present work attempts have been made to study the glass transition temperature of alternative mould materials by using both microwave heating and conventional oven heating. In this present work three epoxy resins, namely R2512, R2515 and R2516, which are commonly used for making injection moulds have been used in combination with two hardeners H2403 and H2409. The magnetron microwave generator used in this research is operating at a frequency of 2.45 GHz with a hollow rectangular waveguide. In order to distinguish the effects between the microwave and conventional heating, a number of experiments were performed to test their mechanical properties such as tensile and flexural strengths. Additionally, differential scanning calorimeter technique was implemented to measure the glass transition temperature on both microwave and conventional heating. This study provided necessary evidences to establish that microwave heated mould materials resulted with higher glass transition temperature than the conventional heating. Finally, attempts were also made to study the microstructure of microwave-cured materials by using a scanning electron microscope in order to analyze the morphology of cured specimens.