885 resultados para Usability tests
Resumo:
This thesis investigated a range of factors underlying the impact of uncorrected refractive errors on laboratory-based tests related to driving. Results showed that refractive blur had a pronounced effect on recognition of briefly presented targets, particularly under low light conditions. Blur, in combination with audio distracters, also slowed a participant's reactions to road hazards in video presentations. This suggests that recognition of suddenly appearing road hazards might be slowed in the presence of refractive blur, particularly under conditions of distraction. These findings highlight the importance of correcting even small refractive errors for driving, particularly at night.
Resumo:
Courts set guidelines for when genetic testing would be ordered - medical testing - life insurers - use of test results - confidentiality.
Resumo:
Research suggests that the length and quality of police-citizen encounters affect policing outcomes. The Koper Curve, for example, shows that the optimal length for police presence in hot spots is between 14 and 15 minutes, with diminishing returns observed thereafter. Our study, using data from the Queensland Community Engagement Trial (QCET), examines the impact of encounter length on citizen perceptions of police performance. QCET involved a randomised field trial, where 60 random breath test (RBT) traffic stop operations were randomly allocated to an experimental condition involving a procedurally just encounter or a business-as-usual control condition. Our results show that the optimal length of time for procedurally just encounters during RBT traffic stops is just less than 2 minutes. We show, therefore, that it is important to encourage and facilitate positive police–citizen encounters during RBTat traffic stops, while ensuring that the length of these interactions does not pass a point of diminishing returns.
Resumo:
We present two unconditional secure protocols for private set disjointness tests. In order to provide intuition of our protocols, we give a naive example that applies Sylvester matrices. Unfortunately, this simple construction is insecure as it reveals information about the intersection cardinality. More specifically, it discloses its lower bound. By using the Lagrange interpolation, we provide a protocol for the honest-but-curious case without revealing any additional information. Finally, we describe a protocol that is secure against malicious adversaries. In this protocol, a verification test is applied to detect misbehaving participants. Both protocols require O(1) rounds of communication. Our protocols are more efficient than the previous protocols in terms of communication and computation overhead. Unlike previous protocols whose security relies on computational assumptions, our protocols provide information theoretic security. To our knowledge, our protocols are the first ones that have been designed without a generic secure function evaluation. More important, they are the most efficient protocols for private disjointness tests in the malicious adversary case.
Resumo:
This study set out to investigate the kinds of learning difficulties encountered by the Malaysian students and how they actually coped with online learning. The modified Online Learning Environment Survey (OLES) instrument was used to collect data from the sample of 40 Malaysian students at a university in Brisbane, Australia. A controlled group of 35 Australian students was also included for comparison purposes. Contrary to assumptions from previous researches, the findings revealed that there were only a few differences between the international Asian and Australian students with regards to their perceptions of online learning. Recommendations based on the findings of this research study were applicable for Australian universities which have Asian international students enrolled to study online.
Resumo:
We present efficient protocols for private set disjointness tests. We start from an intuition of our protocols that applies Sylvester matrices. Unfortunately, this simple construction is insecure as it reveals information about the cardinality of the intersection. More specifically, it discloses its lower bound. By using the Lagrange interpolation we provide a protocol for the honest-but-curious case without revealing any additional information. Finally, we describe a protocol that is secure against malicious adversaries. The protocol applies a verification test to detect misbehaving participants. Both protocols require O(1) rounds of communication. Our protocols are more efficient than the previous protocols in terms of communication and computation overhead. Unlike previous protocols whose security relies on computational assumptions, our protocols provide information theoretic security. To our knowledge, our protocols are first ones that have been designed without a generic secure function evaluation. More importantly, they are the most efficient protocols for private disjointness tests for the malicious adversary case.
Resumo:
LiteSteel beam (LSB) is a new cold-formed steel hollow flange channel section produced using a patented manufacturing process involving simultaneous cold-forming and dual electric resistance welding. The LSBs were commonly used as floor joists and bearers with web openings in residential, industrial and commercial buildings. Due to the unique geometry of LSBs, as well as its unique residual stress characteristics and initial geometric imperfections resultant of manufacturing processes, much of the existing research for common cold-formed steel sections is not directly applicable to LSBs. Many research studies have been carried out to evaluate the behaviour and design of LSBs subject to pure bending actions, predominant shear and combined actions. However, to date, no investigation has been conducted into the web crippling behaviour and strength of LSB sections. Hence detailed experimental studies were conducted to investigate the web crippling behaviour and strengths of LSBs under EOF (End One Flange) and IOF (Interior One Flange) load cases. A total of 26 web crippling tests was conducted and the results were compared with current AS/NZS 4600 design rules. This comparison showed that AS/NZS 4600 (SA, 2005) design rules are very conservative for LSB sections under EOF and IOF load cases. Suitable design equations have been proposed to determine the web crippling capacity of LSBs based on experimental results. This paper presents the details of this experimental study on the web crippling behaviour and strengths of LiteSteel beams under EOF and IOF load cases.
Resumo:
This paper presents the details of an experimental study of a cold-formed steel hollow flange channel beam known as LiteSteel Beam (LSB) subject to web crippling actions (ETF and ITF). Due to the geometry of the LSB, as well as its unique residual stress characteristics and initial geometric imperfections resultant of manufacturing processes, much of the existing research for common cold-formed steel sections is not directly applicable to LSB. Experimental and numerical studies have been carried out to evaluate the behaviour and design of LSBs subject to pure bending actions, predominant shear actions and combined actions. To date, however, no investigation has been conducted into the web crippling behaviour and strength of LSB sections under ETF and ITF load conditions. Hence experimental studies were conducted to assess the web crippling behaviour and strengths of LSBs. Twenty eight web crippling tests were conducted and the results were compared with the current AS/NZS 4600[1] and AISI S100 [2]design equations. Comparison of the ultimate web crippling capacities from tests showed that AS/NZS 4600[1] and AISI S100 [2] design equations are unconservative for LSB sections under ETF and ITF load cases. Hence new equations were proposed to determine the web crippling capacities of LSBs. Suitable design rules were also developed under the DSM format.
Resumo:
The aim of this study was to examine the reliability and validity of field tests for assessing physical function in mid-aged and young-old people (55-70 y). Tests were selected that required minimal space and equipment and could be implemented in multiple field settings such as a general practitioner's office. Nineteen participants completed 2 field and I laboratory testing sessions. Intra-class correlations showed good reliability for the tests of upper body strength (lift and reach, R=.66), lower body strength (sit to stand, R=.80) and functional capacity (Canadian Step Test, R=.92), but not for leg power (single timed chair rise, R=.28). There was also good reliability for the balance test during 3 stances: parallel (94.7% agreement), semi-tandem (73.7%), and tandem (52.6%). Comparison of field test results with objective laboratory measures found good validity for the sit to stand (cf 1RM leg press, Pearson r=.68, p <.05), and for the step test (cf PWC140, r = -.60, p <.001), but not for the lift and reach (cf 1RM bench press, r=.43, p >.05), balance (r=-.13, -.18, .23) and rate of force development tests (r=-.28). It was concluded that the lower body strength and cardiovascular function tests were appropriate for use in field settings with mid-aged and young-old adults.
Resumo:
Technological maturity and the exponential growth of digital applications are contributing to lifestyle changes worldwide. Consequently, learning and teaching is demanding more effective sociotechnical interactions involving emerging technologies, as opposed to traditional, conventional face-to-face learning and teaching approaches. In this context, usability engineering is making significant contributions for improving computer and distance-based learning, both for learners and instructors, which have often been ignored when designing online learning and teaching applications. Usability testing is a central part of the human centered learning approach for developing sustainable STEM education from the socio-technological perspective. Our experiences with usability engineering and the impact of teaching low-cost rapid usability testing methods on knowledge translation from undergraduate to graduate courses to real-world practice (i.e. getting the methods out there in real use) are diverse and multi-modal. Our sample space has been hundreds of trained students who have learned how to do effective usability engineering in real-world situations at higher levels of realism (i.e. fidelity) and at a much lower cost than using traditional fixed usability labs. Furthermore, this low-cost rapid approach to usability engineering has been adopted by many of our graduates who are now managers, CIOs etc and who are using the methods routinely in their organizations in real world applications and scenarios. This knowledge has been used to improve design and implementation of a wide range of applications, including applications designed for teaching and learning.
Resumo:
The use of Wireless Sensor Networks (WSNs) for vibration-based Structural Health Monitoring (SHM) has become a promising approach due to many advantages such as low cost, fast and flexible deployment. However, inherent technical issues such as data asynchronicity and data loss have prevented these distinct systems from being extensively used. Recently, several SHM-oriented WSNs have been proposed and believed to be able to overcome a large number of technical uncertainties. Nevertheless, there is limited research verifying the applicability of those WSNs with respect to demanding SHM applications like modal analysis and damage identification. Based on a brief review, this paper first reveals that Data Synchronization Error (DSE) is the most inherent factor amongst uncertainties of SHM-oriented WSNs. Effects of this factor are then investigated on outcomes and performance of the most robust Output-only Modal Analysis (OMA) techniques when merging data from multiple sensor setups. The two OMA families selected for this investigation are Frequency Domain Decomposition (FDD) and data-driven Stochastic Subspace Identification (SSI-data) due to the fact that they both have been widely applied in the past decade. Accelerations collected by a wired sensory system on a large-scale laboratory bridge model are initially used as benchmark data after being added with a certain level of noise to account for the higher presence of this factor in SHM-oriented WSNs. From this source, a large number of simulations have been made to generate multiple DSE-corrupted datasets to facilitate statistical analyses. The results of this study show the robustness of FDD and the precautions needed for SSI-data family when dealing with DSE at a relaxed level. Finally, the combination of preferred OMA techniques and the use of the channel projection for the time-domain OMA technique to cope with DSE are recommended.
Resumo:
Rapid diagnostic tests (RDTs) represent important tools to diagnose malaria infection. To improve understanding of the variable performance of RDTs that detect the major target in Plasmodium falciparum, namely, histidine-rich protein 2 (HRP2), and to inform the design of better tests, we undertook detailed mapping of the epitopes recognized by eight HRP-specific monoclonal antibodies (MAbs). To investigate the geographic skewing of this polymorphic protein, we analyzed the distribution of these epitopes in parasites from geographically diverse areas. To identify an ideal amino acid motif for a MAb to target in HRP2 and in the related protein HRP3, we used a purpose-designed script to perform bioinformatic analysis of 448 distinct gene sequences from pfhrp2 and from 99 sequences from the closely related gene pfhrp3. The frequency and distribution of these motifs were also compared to the MAb epitopes. Heat stability testing of MAbs immobilized on nitrocellulose membranes was also performed. Results of these experiments enabled the identification of MAbs with the most desirable characteristics for inclusion in RDTs, including copy number and coverage of target epitopes, geographic skewing, heat stability, and match with the most abundant amino acid motifs identified. This study therefore informs the selection of MAbs to include in malaria RDTs as well as in the generation of improved MAbs that should improve the performance of HRP-detecting malaria RDTs.
Resumo:
Background: Malaria rapid diagnostic tests (RDTs) are increasingly used by remote health personnel with minimal training in laboratory techniques. RDTs must, therefore, be as simple, safe and reliable as possible. Transfer of blood from the patient to the RDT is critical to safety and accuracy, and poses a significant challenge to many users. Blood transfer devices were evaluated for accuracy and precision of volume transferred, safety and ease of use, to identify the most appropriate devices for use with RDTs in routine clinical care. Methods: Five devices, a loop, straw-pipette, calibrated pipette, glass capillary tube, and a new inverted cup device, were evaluated in Nigeria, the Philippines and Uganda. The 227 participating health workers used each device to transfer blood from a simulated finger-prick site to filter paper. For each transfer, the number of attempts required to collect and deposit blood and any spilling of blood during transfer were recorded. Perceptions of ease of use and safety of each device were recorded for each participant. Blood volume transferred was calculated from the area of blood spots deposited on filter paper. Results: The overall mean volumes transferred by devices differed significantly from the target volume of 5 microliters (p < 0.001). The inverted cup (4.6 microliters) most closely approximated the target volume. The glass capillary was excluded from volume analysis as the estimation method used is not compatible with this device. The calibrated pipette accounted for the largest proportion of blood exposures (23/225, 10%); exposures ranged from 2% to 6% for the other four devices. The inverted cup was considered easiest to use in blood collection (206/ 226, 91%); the straw-pipette and calibrated pipette were rated lowest (143/225 [64%] and 135/225 [60%] respectively). Overall, the inverted cup was the most preferred device (72%, 163/227), followed by the loop (61%, 138/227). Conclusions: The performance of blood transfer devices varied in this evaluation of accuracy, blood safety, ease of use, and user preference. The inverted cup design achieved the highest overall performance, while the loop also performed well. These findings have relevance for any point-of-care diagnostics that require blood sampling.