999 resultados para Urban Microsociology
Resumo:
Water environments are greatly valued in urban areas as ecological and aesthetic assets. However, it is the water environment that is most adversely affected by urbanisation. Urban land use coupled with anthropogenic activities alters the stream flow regime and degrade water quality with urban stormwater being a significant source of pollutants. Unfortunately, urban water pollution is difficult to evaluate in terms of conventional monetary measures. True costs extend beyond immediate human or the physical boundaries of the urban area and affect the function of surrounding ecosystems. Current approaches for handling stormwater pollution and water quality issues in urban landscapes are limited as these are primarily focused on ‘end-of-pipe’ solutions. The approaches are commonly based either on, insufficient design knowledge, faulty value judgements or inadequate consideration of full life cycle costs. It is in this context that the adoption of a triple bottom line approach is advocated to safeguard urban water quality. The problem of degradation of urban water environments can only be remedied through innovative planning, water sensitive engineering design and the foresight to implement sustainable practices. Sustainable urban landscapes must be designed to match the triple bottom line needs of the community, starting with ecosystem services first such as the water cycle, then addressing the social and immediate ecosystem health needs, and finally the economic performance of the catchment. This calls for a cultural change towards urban water resources rather than the current piecemeal and single issue focus approach. This paper discusses the challenges in safeguarding urban water environments and the limitations of current approaches. It then explores the opportunities offered by integrating innovative planning practices with water engineering concepts into a single cohesive framework to protect valuable urban ecosystem assets. Finally, a series of recommendations are proposed for protecting urban water resources within the context of a triple bottom line approach.
Resumo:
A significant amount (ca. 15-25 GL/a) of PRW (Purified Recycled Water) from urban areas is foreseen as augmentation of the depleted groundwater resources of the Lockyer Valley (approx. 80 km west of Brisbane). Theresearch project uses field investigations, lab trials and modelling techniques to address the key challenges: (i) how to determine benefits of individual users from the augmentation of a natural common pool resource; (ii) how to minimise impacts of applying different quality water on the Lockyer soils, to creeks and on aquifier materials; (iii) how to minimuse mobilisation of salts in the unsaturated and saturated zones as a result of increased deep drainage; (iv) determination of potential for direct aquifer recharge using injection wells?
Resumo:
Purpose – In recent years, knowledge-based urban development (KBUD) has introduced as a new strategic development approach for the regeneration of industrial cities. It aims to create a knowledge city consists of planning strategies, IT networks and infrastructures that achieved through supporting the continuous creation, sharing, evaluation, renewal and update of knowledge. Improving urban amenities and ecosystem services by creating sustainable urban environment is one of the fundamental components for KBUD. In this context, environmental assessment plays an important role in adjusting urban environment and economic development towards a sustainable way. The purpose of this paper is to present the role of assessment tools for environmental decision making process of knowledge cities. Design/methodology/approach – The paper proposes a new assessment tool to figure a template of a decision support system which will enable to evaluate the possible environmental impacts in an existing and future urban context. The paper presents the methodology of the proposed model named ‘ASSURE’ which consists of four main phases. Originality/value –The proposed model provides a useful guidance to evaluate the urban development and its environmental impacts to achieve sustainable knowledge-based urban futures. Practical implications – The proposed model will be an innovative approach to provide the resilience and function of urban natural systems secure against the environmental changes while maintaining the economic development of cities.
Resumo:
Accurate estimation of input parameters is essential to ensure the accuracy and reliability of hydrologic and water quality modelling. Calibration is an approach to obtain accurate input parameters for comparing observed and simulated results. However, the calibration approach is limited as it is only applicable to catchments where monitoring data is available. Therefore, methodology to estimate appropriate model input parameters is critical, particularly for catchments where monitoring data is not available. In the research study discussed in the paper, pollutant build-up parameters derived from catchment field investigations and model calibration using MIKE URBAN are compared for three catchments in Southeast Queensland, Australia. Additionally, the sensitivity of MIKE URBAN input parameters was analysed. It was found that Reduction Factor is the most sensitive parameter for peak flow and total runoff volume estimation whilst Build-up rate is the most sensitive parameter for TSS load estimation. Consequently, these input parameters should be determined accurately in hydrologic and water quality simulations using MIKE URBAN. Furthermore, an empirical equation for Southeast Queensland, Australia for the conversion of build-up parameters derived from catchment field investigations as MIKE URBAN input build-up parameters was derived. This will provide guidance for allowing for regional variations in the estimation of input parameters for catchment modelling using MIKE URBAN where monitoring data is not available.
Resumo:
Presentation about research projects that build understanding of urban design and interactions and plan for future opportunities. What do we need to model?
Resumo:
Presentation of research projects