971 resultados para Up conversion lasers


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Flexible radio transmitters based on the Software-Defined Radio (SDR) concept are gaining an increased research importance due to the unparalleled proliferation of new wireless standards operating at different frequencies, using dissimilar coding and modulation schemes, and targeted for different ends. In this new wireless communications paradigm, the physical layer of the radio transmitter must be able to support the simultaneous transmission of multi-band, multi-rate, multi-standard signals, which in practice is very hard or very inefficient to implement using conventional approaches. Nevertheless, the last developments in this field include novel all-digital transmitter architectures where the radio datapath is digital from the baseband up to the RF stage. Such concept has inherent high flexibility and poses an important step towards the development of SDR-based transmitters. However, the truth is that implementing such radio for a real world communications scenario is a challenging task, where a few key limitations are still preventing a wider adoption of this concept. This thesis aims exactly to address some of these limitations by proposing and implementing innovative all-digital transmitter architectures with inherent higher flexibility and integration, and where improving important figures of merit, such as coding efficiency, signal-to-noise ratio, usable bandwidth and in-band and out-of-band noise will also be addressed. In the first part of this thesis, the concept of transmitting RF data using an entirely digital approach based on pulsed modulation is introduced. A comparison between several implementation technologies is also presented, allowing to state that FPGAs provide an interesting compromise between performance, power efficiency and flexibility, thus making them an interesting choice as an enabling technology for pulse-based all-digital transmitters. Following this discussion, the fundamental concepts inherent to pulsed modulators, its key advantages, main limitations and typical enhancements suitable for all-digital transmitters are also presented. The recent advances regarding the two most common classes of pulse modulated transmitters, namely the RF and the baseband-level are introduced, along with several examples of state-of-the-art architectures found on the literature. The core of this dissertation containing the main developments achieved during this PhD work is then presented and discussed. The first key contribution to the state-of-the-art presented here consists in the development of a novel ΣΔ-based all-digital transmitter architecture capable of multiband and multi-standard data transmission in a very flexible and integrated way, where the pulsed RF output operating in the microwave frequency range is generated inside a single FPGA device. A fundamental contribution regarding the simultaneous transmission of multiple RF signals is then introduced by presenting and describing novel all-digital transmitter architectures that take advantage of multi-gigabit data serializers available on current high-end FPGAs in order to transmit in a time-interleaved approach multiple independent RF carriers. Further improvements in this design approach allowed to provide a two-stage up-conversion transmitter architecture enabling the fine frequency tuning of concurrent multichannel multi-standard signals. Finally, further improvements regarding two key limitations inherent to current all-digital transmitter approaches are then addressed, namely the poor coding efficiency and the combined high quality factor and tunability requirements of the RF output filter. The followed design approach based on poliphase multipath circuits allowed to create a new FPGA-embedded agile transmitter architecture that significantly improves important figures of merit, such as coding efficiency and SNR, while maintains the high flexibility that is required for supporting multichannel multimode data transmission.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nesta tese relatam-se estudos de fotoluminescência de nanopartículas de óxidos e fosfatos dopados com iões trivalentes de lantanídeos, respectivamente, nanobastonetes de (Gd,Eu)2O3 e (Gd,Yb,Er)2O3 e nanocristais de (Gd,Yb,Tb)PO4, demonstrando-se também aplicações destes materiais em revestimentos inteligentes, sensores de temperatura e bioimagem. Estuda-se a transferência de energia entre os sítios de Eu3+ C2 e S6 dos nanobastonetes Gd2O3. A contribuição dos mecanismos de transferência de energia entre sítios para o tempo de subida 5D0(C2) é descartada a favor da relaxação directa 5D1(C2) 5D0(C2) (i.e., transferência de energia entre níveis). O maior tempo de decaimento do nível 5D0(C2) nos nanobastonetes, relativamente ao valor medido para o mesmo material na forma de microcristais, é atribuído, quer à existência de espaços livres entre nanobastonetes próximos (factor de enchimento ou fracção volúmica), quer à variação do índice de refracção efectivo do meio em torno dos iões Eu3+. A dispersão de nanobastonetes de (Gd,Eu)2O3 em três resinas epoxi comerciais através da cura por UV permite obter nanocompósitos epoxi- (Gd,Eu)2O3. Relatam-se estudos cinéticos e das propriedades térmicas e de fotoluminescência destes nanocompósitos. Estes, preservam as típicas propriedades de emissão do Eu3+, mostrando o potencial do método de cura por UV para obter revistimentos inteligentes e fotoactivos. Considera-se um avanço significativo a realização de uma nanoplataforma óptica, incorporando aquecedor e termómetro e capaz de medir uma ampla gama de temperaturas (300-2000 K) à escala nano, baseada em nanobastonetes de (Gd,Yb,Er)2O3 (termómetros) cuja superfície se encontra revestida com nanopartículas de ouro. A temperature local é calculada usando, quer a distribuição de Boltzmann (300-1050 K) do rácio de intensidades da conversão ascendente 2H11=2!4I15=2/4S3=2!4I15=2, quer a lei de Planck (1200-2000 K) para uma emissão de luz branca atribuída à radiação do corpo negro. Finalmente, estudam-se as propriedades de fotoluminescência correspondentes às conversões ascendente e descendente de energia em nanocristais de (Gd,Yb,Tb)PO4 sintetizados por via hidrotérmica. A relaxividade (ressonância magnética) do 1H destes materiais são investigadas, tendo em vista possíveis aplicações em imagem bimodal (luminescência e ressonância magnética nuclear).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The optical, magnetic and structural properties of Eu doped low silica calcium aluminosilicate glasses were investigated. The optical absorption coefficient presented two bands at 39 246 and 29 416 cm(-1), which were assigned respectively to the 4f(7) ((8)S(7/2)) -> 4f(6) (4F(J)) 5d (T(2g)), and 4f(7) ((8)S(7/2)) -> 4f(6) (4F(J)) 5d (E(g)) transitions of Eu(2+). The fluorescence measured at 300 K on a sample doped with 0.5 wt% of Eu(2)O(3) exhibited a broad band centered at 17 350 cm(-1), which is attributed to the 4f(6)5d -> 4f(7) transition of Eu(2+), whereas the additional peaks are due to the (5)D(0) -> (7)F(J) (J = 1, 2, 4) transitions of Eu(3+). From magnetization and XANES data it was possible to evaluate the fractions of Eu(2+) and Eu(3+) for the sample doped with 0.5 and 5.0 wt% of Eu(2)O(3), the values of which were approximately 30 and 70%, respectively.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The sequential Monte Carlo/CASPT2 approach was employed to investigate deactivation and emission processes from the lowest-lying pi pi * and n pi * excited states of 9H-adenine in aqueous solution. It is found that conical intersections connecting the pi pi* and n pi* states with the ground state are also present in solution, whereas the barriers for the deactivation paths are significantly smaller on solvated conditions. The large destabilization of the n pi* state found in solution possibly prevents its involvement in the deactivation photophysics and explains the change from a bi- to a mono-exponential decay for the molecule in the gas phase and solution, respectively. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The nonadiabatic photochemistry of the guanine molecule (2-amino-6-oxopurine) and some of its tautomers has been studied by means of the high-level theoretical ab initio quantum chemistry methods CASSCF and CASPT2. Accurate computations, based by the first time on minimum energy reaction paths, states minima, transition states, reaction barriers, and conical intersections on the potential energy hypersurfaces of the molecules lead to interpret the photochemistry of guanine and derivatives within a three-state model. As in the other purine DNA nucleobase, adenine, the ultrafast subpicosecond fluorescence decay measured in guanine is attributed to the barrierless character of the path leading from the initially populated (1)(pi pi* L-a) spectroscopic state of the molecule toward the low-lying methanamine-like conical intersection (gs/pi pi* L-a)(CI). On the contrary, other tautomers are shown to have a reaction energy barrier along the main relaxation profile. A second, slower decay is attributed to a path involving switches toward two other states, (1)(pi pi* L-b) and, in particular, (1)(n(o)pi*), ultimately leading to conical intersections with the ground state. A common framework for the ultrafast relaxation of the natural nucleobases is obtained in which the predominant role of a pi pi*-type state is confirmed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The biomedical application of graphene quantum dots (GQDs) is a new emerging area. However, their safety data are still in scarcity to date. Particularly, the effect of GQDs on the immune system remains unknown. This study aimed to elucidate the interaction of GQDs with macrophages and the underlying mechanisms. Our results showed that GQDs slightly affected the cell viability and membrane integrity of macrophages, whereas GQDs significantly increased reactive oxygen species (ROS) generation and apoptotic and autophagic cell death with an increase in the expression level of Bax, Bad, caspase 3, caspase 9, beclin 1, and LC3-I/II and a decrease in that of Bcl-2. Furthermore, low concentrations of GQDs significantly increased the expression of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-8, whereas high concentrations of GQDs elicited opposite effects on the cytokines production. SB202190, a selective inhibitor of p38 mitogen-activated protein kinase (MAPK), abolished the cytokine-inducing effect of GQDs in macrophages. Moreover, GQDs significantly increased the phosphorylation of p38 MAPK and p65, and promoted the nuclear translocation of nuclear factor-κB (NF-κB). Taken together, these results show that GQDs induce ROS generation, apoptosis, autophagy, and inflammatory response via p38MAPK and NF-κB mediated signaling pathways in THP-1 activated macrophages.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Glass samples with the composition (mol%) 80TeO(2)-10Nb(2)O(5)-5K(2)O-5Li(2)O, stable against crystallization, were prepared containing Yb3+, Tm3+ and Ho3+. The energy transfer and energy back transfer mechanisms in samples containing 5% Yb3+-5% Tm3+ and 5% Yb3+-5% Tm3+-0.5% Ho3+ were estimated by measuring the absorption and fluorescence spectra together with the time dependence of the Yb3+ F-2(5/2) excited state. A good fit for the luminescence time evolution was obtained with the Yokota-Tanimoto's diffusion-limited model. The up-conversion fluorescence was also studied in 5% Yb-5% Tm. 5% Yb-0.5% Ho and 5% Yb-5% Tm-0.5% Ho tellurite glasses under laser excitation at 975 nm. Strong emission was observed from (1)G(4) and F-3(2) Tm3+ energy levels in all samples. The S-5(2) Ho3+ emission was observed only in Yb3+Ho3+ samples being completely quenched in Yb3+/Tm3+/Tm3+ samples. (C) 2001 Elsevier B.V. B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigate the linear optical properties and energy transfer processes in tungstate fluorophosphate glass doped with thulium (Tm3+) and neodymium (Nd3+) ions. The linear absorption spectra from 370 to 3000 nm were obtained. Transitions probabilities, radiative lifetimes, and transition branching ratios were determined using the Judd-Ofelt [Phys. Rev. 127, 750 (1962); J. Chem. Phys. 37, 511 (1962)] theory. Frequency up-conversion to the blue region and fluorescence in the infrared were observed upon pulsed excitation in the range of 630-700 nm. The excitation spectra of the luminescence were obtained to understand the origin of the signals. The temporal decay of the fluorescence was measured for different concentrations of the doping ions. Energy transfer rates among the Tm3+ and Nd3+ ions were also determined.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aware of the difficulties in applying sol-gel technology on the preparation of thin films suitable for optical devices, the present paper reports on the preparation of crack-free erbium- and ytterbium-doped silica: hafnia thick films onto silica on silicon. The film was obtained using a dispersion of silica-hafnia nanoparticles into a binder solution, spin-coating, regular thermal process and rapid thermal process. The used methodology has allowed a significant increase of the film thickness. Based on the presented results good optical-quality films with the required thickness for a fiber matching single mode waveguide were obtained using the erbium- and ytterbium-activated sol-gel silica:hafnia system. The prepared film supports two transversal electric modes at 1550 nm and the difference between the transversal electric mode and the transversal magnetic mode is very small, indicating low birefringence. Photoluminescence of the I-4(13/2) -> I-4(15/2) transition of erbium ions shows a broad band centered at 1.53 mu m with full width at a half maximum of 28 nm. Up-conversion emission was carried out under different pump laser powers, and just one transition at red region was observed. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Crystallization of binary InF3-MF2 and GaF3-MF2 (where M = Ba, Sr and Ca) glasses was studied. Characteristic temperatures and kinetic parameters E (activation energy) and n (Avrami exponent) were obtained. Stability against devitrification is discussed in terms of the above cited parameters and also of some others parameters proposed in literature. Optical properties (IR and upconversion emissions) are reported in different crystallized samples containing Nd3+. The main observation is that up conversion emission presents an enhanced sensibility to crystallization when compared to conventional emission. © 1997 Published by Elsevier Science B.V.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Experimental results are reported which show a strong evidence of energy transfer between Ho 3+ ions in a fluoroindate glass excited by a pulsed laser operating at 640 nm. We identified the origin of the blue and green upconverted fluorescence observed as being due to a Ho 3+-Ho 3+ pair interaction process. The dynamics of the fluorescence revealed the pathways involved in the energy transfer assisted upconversion process. © 2002 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigated near-infrared-to-blue upconversion from thulium (Tm 3+) doped in tellurite glasses upon continuous wave excitation near 800 nm. We observed an enhancement of over two orders of magnitude of the upconverted emission at ∼480nm when neodymium (Nd 3+) ions were codoped with Tm 3+ ions. For comparison, using a Tm 3+:Nd 3+ codoped fluorozirconate glass as a reference material we observed a 40-fold enhancement of the blue emission. Analysis of the blue emission for samples with different doping levels of Nd 3+ ions showed that energy transfer between Nd 3+ and Tm 3+ is the mechanism responsible for the enhancement in upconversion. © 2002 American Institute of Physics. © 2002 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Optical characteristics of tellurite glasses containing silver nanoparticles (NPs) and the influence on the emission spectrum of Er 3+ ions were studied. The transitions 4f ↔ 4f from erbium ions, mainly the 4I13/2 → 4I15/2 transition that involve upconversion energy process, have a strongly dependence with the chemical structure of the rare earth ion. In the present work, silver nanparticles (NPs) embedded in the host vitreous material, show a significant enhance (or quenching) on the erbium fluorescence due the long-range electromagnetic interaction between the plasmon surface energy of the Ag NPs (Localized Surface Plasmon Resonance -LSPR) and the Er3+ ions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Changing the sample's temperature from 200 K to 535 K, we observed 670-fold enhancement of a phonon-assisted upconversion emission at ≈754 nm obtained from a Nd3+-doped tellurite glass excited by 5 ns laser pulses at 805 nm. A rate-equation model, including the relevant energy levels and temperature dependent transition rates, is proposed to describe the process. The results fit well with the data when one considers the nonradiative transitions contributing for the 754 nm luminescence are promoted by an effective phonon mode with energy of 700 cm-1. © 2013 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Relative to the Er3 +:gold-nanoparticle (Er3 +:Au-NP) axis, the polarization of the gold nanoparticle can be longitudinal (electric dipole parallel to the Er3 +:Au-NP axis) or transverse (electric dipole perpendicular to the Er3 +:Au-NP axis). For longitudinal polarization, the plasmon resonance modes of gold nanoparticles embedded in Er3 +-doped germanium-tellurite glass are activated using laser lines at 808 and 488 nm in resonance with radiative transitions of Er3 + ions. The gold nanoparticles were grown within the host glass by thermal annealing over various lengths of time, achieving diameters lower than 1.6 nm. The resonance wavelengths, determined theoretically and experimentally, are 770 and 800 nm. The absorption wavelength of nanoparticles was determined by using the Frohlich condition. Gold nanoparticles provide tunable emission resulting in a large enhancement for the 2H11/2 → 4I13/2 (emission at 805 nm) and 4S 3/2 → 4I13/2 (emission at 840 nm) electronic transitions of Er3 + ions; this is associated with the quantum yield of the energy transfer process. The excitation pathways, up-conversion and luminescence spectra of Er3 + ions are described through simplified energy level diagrams. We observed that up-conversion is favored by the excited-state absorption due to the presence of the gold nanoparticles coupled with the Er3 + ions within the glass matrix. © 2013 Elsevier B.V.