831 resultados para Universities and colleges--South Carolina--Charleston Region--Directories
Resumo:
This CD contains summary data of bottlenose dolphins stranded in South Carolina using a Geographical Information System (GIS) and contains two published manuscripts in .pdf files. The intent of this CD is to provide data on bottlenose dolphin strandings in South Carolina to marine mammal researchers and managers. This CD is an accumulation of 14 years of stranding data collected through the collaborations of the National Ocean Service, Center for Coastal Environmental Health and Biomolecular Research (CCEHBR), the South Carolina Department of Natural Resources, and numerous volunteers and veterinarians that comprised the South Carolina Marine Mammal Stranding Network. Spatial and temporal information can be visually represented on maps using GIS. For this CD, maps were created to show relationships of stranding densities with land use, human population density, human interaction with dolphins, high geographical regions of live strandings, and seasonal changes. Point maps were also created to show individual strandings within South Carolina. In summary, spatial analysis revealed higher densities of bottlenose dolphin strandings in Charleston and Beaufort Counties, which consist of urban land with agricultural input. This trend was positively correlated with higher human population levels in these coastal counties as compared with other coastal counties. However, spatial analysis revealed that certain areas within a county may have low human population levels but high stranding density, suggesting that the level of effort to respond to strandings is not necessarily positively correlated with the density of strandings in South Carolina. Temporal analysis revealed a significantly higher density of bottlenose dolphin strandings in the northern portion of the State in the fall, mostly due to an increase of neonate strandings. On a finer geographic scale, seasonal stranding densities may fluctuate depending on the region of interest. Charleston Harbor had the highest density of live bottlenose dolphin strandings compared to the rest of the State. This was due in large part to the number of live dolphin entanglements in the crab pot fishery, the largest source of fishery-related mortality for bottlenose dolphins in South Carolina (Burdett and McFee 2004). Spatial density calculations also revealed that Charleston and Beaufort accounted for the majority of dolphins that were involved with human activities. 1
Resumo:
Important advances in scholarship on the post-emancipation South have made possible a new synthesis that moves beyond broad generalizations about African American agency to identify both the shared elements in black life across the region and the varying capacity of freedpeople to assert their interests in the face of white hostility. Building on a number of recent studies of Reconstruction this article seeks to demonstrate that the varying capacity of freedpeople in South Carolina to shape and defend the new society that would emerge after the end of slavery was rooted in their relative strength at work and in their communities. In Charleston and its lowcountry rural hinterland, demographic strength combined with deeply-rooted traditions of collective assertion to sustain a remarkably vibrant grassroots movement that persisted beyond the overthrow of Reconstruction. From very early on, by contrast, former slaves dispersed across the rural interior found their freedom severely circumscribed by a bellicose and heavily-armed white paramilitary campaign.
Resumo:
A special meeting of the Association was held as it was resolved that Chancellor Harper was requested to prepare a memoir of the late Chancellor De Saussure.
Resumo:
This document contains information on the nest and eggs of the bird, Bachman’s Warbler.
Resumo:
Neuston samples collected from the Charleston Bump region off the coast of South Carolina, U.S.A., during the summers of 2002 and 2003 consistently included a decapod species of undetermined identity with a large brachyuran megalopa. Despite their resemblance to some calappids, it was impossible to make a definitive identification based solely on general morphology. Therefore, additional neuston tows were taken on the continental shelf near Charleston, during the summer of 2004 to obtain these living megalopae. These were raised successfully through five juvenile stages at the Southeastern Regional Taxonomic Center (SERTC) laboratory. The morphology of the juveniles provided evidence that they are megalopae of Calappa tortugae Rathbun, 1933. Comparisons with megalopae of Hepatus epheliticus (Linnaeus, 1763), H. pudibundus (Herbst, 1785), Calappa flammea (Herbst, 1794) and Cryptosoma balguerii (Desbonne, 1867) are presented here. This is the first complete description of the megalopa morphology of a member of the genus Calappa Weber, 1795 from the Western Atlantic, and it is helpful for taxonomic, systematic and ecological purposes.
Resumo:
A census of 925 U.S. colleges and universities offering masters and doctorate degrees was conducted in order to study the number of elements of an environmental management system as defined by ISO 14001 possessed by small, medium and large institutions. A 30% response rate was received with 273 responses included in the final data analysis. Overall, the number of ISO 14001 elements implemented among the 273 institutions ranged from 0 to 16, with a median of 12. There was no significant association between the number of elements implemented among institutions and the size of the institution (p = 0.18; Kruskal-Wallis test) or among USEPA regions (p = 0.12; Kruskal-Wallis test). The proportion of U.S. colleges and universities that reported having implemented a structured, comprehensive environmental management system, defined by answering yes to all 16 elements, was 10% (95% C.I. 6.6%–14.1%); however 38% (95% C.I. 32.0%–43.8%) reported that they had implemented a structured, comprehensive environmental management system, while 30.0% (95% C.I. 24.7%–35.9%) are planning to implement a comprehensive environmental management system within the next five years. Stratified analyses were performed by institution size, Carnegie Classification and job title. ^ The Osnabruck model, and another under development by the South Carolina Sustainable Universities Initiative, are the only two environmental management system models that have been proposed specifically for colleges and universities, although several guides are now available. The Environmental Management System Implementation Model for U.S. Colleges and Universities developed is an adaptation of the ISO 14001 standard and USEPA recommendations and has been tailored to U.S. colleges and universities for use in streamlining the implementation process. In using this implementation model created for the U.S. research and academic setting, it is hoped that these highly specialized institutions will be provided with a clearer and more cost-effective path towards the implementation of an EMS and greater compliance with local, state and federal environmental legislation. ^
Resumo:
Disbound Original Held in Oak Street Library Facility.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Microfilm. Ann Arbor, Mich. : Xerox University Microfilms -- 1 reel ; 35 mm.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Digital image
Resumo:
Toxic chemicals can enter the marine environment through numerous routes: stormwater runoff, industrial point source discharges, municipal wastewater discharges, atmospheric deposition, accidental spills, illegal dumping, pesticide applications and agricultural practices. Once they enter a receiving system, toxicants often become bound to suspended particles and increase in density sufficiently to sink to the bottom. Sediments are one of the major repositories of contaminants in aquatic envronments. Furthermore, if they become sufficiently contaminated sediments can act as sources of toxicants to important biota. Sediment quality data are direct indicators of the health of coastal aquatic habitats. Sediment quality investigations conducted by the National Oceanic and Atmospheric Administration (NOAA) and others have indicated that toxic chemicals are found in the sediments and biota of some estuaries in South Carolina and Georgia (NOAA, 1992). This report documents the toxicity of sediments collected within five selected estuaries: Savannah River, Winyah Bay, Charleston Harbor, St. Simons Sound, and Leadenwah Creek (Figure 1). (PDF contains 292 pages)