950 resultados para Ultrasonic velocity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Improved biopharmaceutical delivery may be achieved via the use of biodegradable microspheres as delivery vehicles. Biodegradable microspheres offer the advantages of maintaining sustained protein release over time whilst simultaneously protecting the biopharmaceutical from degradation. Particle samples produced by ultrasonic atomization were studied in order to determine a feed stock capable of producing protein loaded poly-ε-caprolactone (PCL) particles suitable for nasal delivery (i.e., less than 20 μm). A 40 kHz atomization system was used with a 6 mm full wave atomization probe. The effect of solids percent, feed flow rate, volumetric ratio of the polymer stock to the protein stock, and protein concentration in the protein stock on particle size characteristics were determined. It was shown that feed stocks containing 100 parts of 0.5 or 1.0% w/v PCL in acetone with one part 100 mg ml -1 BSA and 15 mg ml -1 PVA produced particles with a mass moment diameter (D[4,3]) of 13.17 μm and 9.10 μm, respectively in addition to displaying high protein encapsulation efficiencies of 93 and 95%, respectively. The biodegradable PCL particles were shown to be able to deliver encapsulated protein in vitro under physiological conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simple and reliable formation of biodegradable nanoparticles formed from poly-ε-caprolactone was achieved using 1.645 MHz piston atomization of a source fluid of 0.5% w/v of the polymer dissolved in acetone; the particles were allowed to descend under gravity in air 8 cm into a 1 mM solution of sodium dodecyl sulfate. After centrifugation to remove surface agglomerations, a symmetric monodisperse distribution of particles φ 186 nm (SD=5.7, n=6) was obtained with a yield of 65.2%. © 2006 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biopharmaceuticals have been shown to have low delivery and transformation efficiencies. To over come this, larger doses are administered in order to obtain the desired response which may lead to toxicity and drug resistance. This paper reports upon a continuous particle production method utilizing surface acoustic wave atomization to reliably produce micro and nanoparticles with physical characteristics to facilitate the cellular uptake of biopharmaceuticals. By producing particles of an optimal size for cellular uptake, the efficacy and specificity of drug loaded nanoparticles will be increased. Better delivery methods will result in dosage reduction (hence lower costs per dose), reduced toxicity, and reduced problems associated with multidrug resistance due to over dosing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In aerosol research, a common approach for the collection of particulate matter (PM) is the use of filters in order to obtain sufficient material to undertake analysis. For subsequent chemical and toxicological analyses, in most of cases the PM needs to be extracted from the filters. Sonication is commonly used to most efficiently extract the PM from the filters. Extraction protocols generally involve 10 - 60 min of sonication. The energy of ultrasonic waves causes the formation and collapse of cavitation bubbles in the solution. Inside the collapsing cavities the localised temperatures and pressures can reach extraordinary values. Although fleeting, such conditions can lead to pyrolysis of the molecules present inside the cavitation bubbles (gases dissolved in the liquid and solvent vapours), which results in the production of free radicals and the generation of new compounds formed by reactions with these free radicals. For example, simple sonication of pure water will result in the formation of detectable levels of hydroxyl radicals. As hydroxyl radicals are recognised as playing key roles as oxidants in the atmosphere the extraction of PM from filters using sonication is therefore problematic. Sonication can result in significant chemical and physical changes to PM through thermal degradation and other reactions. In this article, an overview of sonication technique as used in aerosol research is provided, the capacity for radical generation under these conditions is described and an analysis is given of the impact of sonication-derived free radicals on three molecular probes commonly used by researchers in this field to detect Reactive Oxygen Species in PM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Agility is an essential part of many athletic activities. Currently, agility drill duration is the sole criterion used for evaluation of agility performance. The relationship between drill duration and factors such as acceleration, deceleration and change of direction, however, has not been fully explored. This paper provides a mathematical description of the relationship between velocity and radius of curvatures in an agility drill through implementation of a power law (PL). Two groups of skilled and unskilled participants performed a cyclic forward/backward shuttle agility test. Kinematic data was recorded using motion capture system at a sampling rate of 200 Hz. The logarithmic relationship between tangential velocity and radius of curvature of participant trajectories in both groups was established using the PL. The slope of the regression line was found to be 0.26 and 0.36, for the skilled and unskilled groups, respectively. The magnitudes of regression line slope for both groups were approximately 0.3 which is close to the expected 1/3 value. Results are an indication of how the PL could be implemented in an agility drill thus opening the way for establishment of a more representative measure of agility performance instead of drill duration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydrodynamic modes and the velocity autocorrelation functions for a dilute sheared inelastic fluid are analyzed using an expansion in the parameter epsilon=(1-e)(1/2), where e is the coefficient of restitution. It is shown that the hydrodynamic modes for a sheared inelastic fluid are very different from those for an elastic fluid in the long-wave limit, since energy is not a conserved variable when the wavelength of perturbations is larger than the ``conduction length.'' In an inelastic fluid under shear, there are three coupled modes, the mass and the momenta in the plane of shear, which have a decay rate proportional to k(2/3) in the limit k -> 0, if the wave vector has a component along the flow direction. When the wave vector is aligned along the gradient-vorticity plane, we find that the scaling of the growth rate is similar to that for an elastic fluid. The Fourier transforms of the velocity autocorrelation functions are calculated for a steady shear flow correct to leading order in an expansion in epsilon. The time dependence of the autocorrelation function in the long-time limit is obtained by estimating the integral of the Fourier transform over wave number space. It is found that the autocorrelation functions for the velocity in the flow and gradient directions decay proportional to t(-5/2) in two dimensions and t(-15/4) in three dimensions. In the vorticity direction, the decay of the autocorrelation function is proportional to t(-3) in two dimensions and t(-7/2) in three dimensions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We find in complementary experiments and event-driven simulations of sheared inelastic hard spheres that the velocity autocorrelation function psi(t) decays much faster than t(-3/2) obtained for a fluid of elastic spheres at equilibrium. Particle displacements are measured in experiments inside a gravity-driven flow sheared by a rough wall. The average packing fraction obtained in the experiments is 0.59, and the packing fraction in the simulations is varied between 0.5 and 0.59. The motion is observed to be diffusive over long times except in experiments where there is layering of particles parallel to boundaries, and diffusion is inhibited between layers. Regardless, a rapid decay of psi(t) is observed, indicating that this is a feature of the sheared dissipative fluid, and is independent of the details of the relative particle arrangements. An important implication of our study is that the non-analytic contribution to the shear stress may not be present in a sheared inelastic fluid, leading to a wider range of applicability of kinetic theory approaches to dense granular matter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Double-diffusive finger convection occurs in many natural processes.The theories for double-diffusive phenomena that exist at present consider systems with linear stratification in temperature and salinity. The double-diffusive systems with step change in salinity and temperature are, however, not amenable to simple stability analysis. Hence factors that control the width of the finger, velocity, and fluxes in systems that have step change in temperature and salinity have not been understood so far. In this paper we provide new physical insight regarding factors that influence finger convection in two-layer double-diffusive system through two-dimensional numerical simulations. Simulations have been carried out for density stability ratios (R-rho) from 1.5 to 10. For each density stability ratio, the thermal Rayleigh number (Ra-T) has been systematically varied from 7x10(3) to 7x10(8). Results from these simulations show how finger width, velocity, and flux ratios in finger convection are interrelated and the influence of governing parameters such as density stability ratio and the thermal Rayleigh number. The width of the incipient fingers at the time of onset of instability has been shown to vary as Ra-T-1/3. Velocity in the finger varies as Ra(T)1/3/R-rho. Results from simulation agree with the scale analysis presented in the paper. Our results demonstrate that wide fingers have lower velocities and flux ratios compared to those in narrow fingers. This result contradicts present notions about the relation between finger width and flux ratio. A counterflow heat-exchanger analogy is used in understanding the dependence of flux ratio on finger width and velocity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ultrasonic degradation of poly(acrylic acid), a water-soluble polymer, was studied in the presence of persulfates at different temperatures in binary solvent Mixtures of methanol and water. The degraded samples were analyzed by gel permeation chromatography for the time evolution of the molecular weight distributions. A continuous distribution kinetics model based on midpoint chain scission was developed, and the degradation rate coefficients were determined. The decline in the rate of degradation of poly(acrylic acid) with increasing temperature and with an increment in the methanol content in the binary solvent mixture of methanol and water was attributed to the increased vapor pressure of the solutions. The experimental data showed an augmentation of the degradation rate of the polymer with increasing oxidizing agent (persulfate) concentrations. Different concentrations of three persulfates-potassium persulfate, ammonium persulfate, and sodium persulfate-were used. It was found that the ratio of the polymer degradation rate coefficient to the dissociation rate constant of the persulfate was constant. This implies that the ultrasonic degradation rate of poly(acrylic acid) can be determined a priori in the presence of any initiator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present a new approach for velocity vector imaging and time-resolved measurements of strain rates in the wall of human arteries using MRI and we prove its feasibility on two examples: in vitro on a phantom and in vivo on the carotid artery of a human subject. Results point out the promising potential of this approach for investigating the mechanics of arterial tissues in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Doppler weather radars with fast scanning rates must estimate spectral moments based on a small number of echo samples. This paper concerns the estimation of mean Doppler velocity in a coherent radar using a short complex time series. Specific results are presented based on 16 samples. A wide range of signal-to-noise ratios are considered, and attention is given to ease of implementation. It is shown that FFT estimators fare poorly in low SNR and/or high spectrum-width situations. Several variants of a vector pulse-pair processor are postulated and an algorithm is developed for the resolution of phase angle ambiguity. This processor is found to be better than conventional processors at very low SNR values. A feasible approximation to the maximum entropy estimator is derived as well as a technique utilizing the maximization of the periodogram. It is found that a vector pulse-pair processor operating with four lags for clear air observation and a single lag (pulse-pair mode) for storm observation may be a good way to estimate Doppler velocities over the entire gamut of weather phenomena.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The attenuation of long-wavelength phonons due to their interaction with electronic excitations in disordered systems is investigated here. Lattice strain couples to electronic stress, and thus ultrasonic attenuation measures electronic viscosity. The enhancement and critical divergence of electronic viscosity due to localization effects is calculated for the first time. Experimental consequences for the anomalous increase of ultrasonic attenuation in disordered metals close to the metal-insulator transition are discussed. In the localized regime, the appropriate model is one of electronic two-level systems (TLS’s) coupled to phonons. The TLS consists of a pair of states with one localized state occupied and the other unoccupied. The density of such low-excitation-energy TLS’s is nonzero due to long-range Coulomb interactions. The question of whether these could be significant low-energy excitations in glasses is touched upon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new binary law of velocity distribution has been developed to describe the velocity profile for the entire flow region. The law is a combination of logarithmic law, valid in the wall (inner) region, and parabolic law, valid in the core (outer) region of the flow. The validity of the law has been established based on earlier data on flat plates, rough and smooth pipes and experimental data obtained from rigid-walled open channels with plane sand beds. A procedure of estimating bed shear stress from the proposed law of velocity distribution using the measured velocity profile has been evolved. Bed shear estimates made according to this procedure are in agreement with the values obtained from uniform flow analysis in the case of open channel flow over a sediment bed. The proposed method of estimating the bed shear stress from the observed velocity profiles is found to be particularly useful in cases where it is difficult to determine precisely the true bed level, such as in the case of flow over sediment beds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growth of the nanocrystalline tribolayer produced in oxygen free high conductivity copper after sliding against 440C stainless steel was studied. Tests were conducted on a pin-on-disk tribometer at sliding velocities of 0.05 and 1.0 m/s and sliding times of 0.1 to 10,000 s. Subsurface deformation and the growth of the tribolayer as a function of time were studied with the use of transmission electron microscopy and ion induced secondary electron microscopy. A continuous nanocrystalline tribolayer was produced after as little as 10 s of sliding at both sliding velocities. The tribolayer produced by sliding at 0.05 m/s continued to grow at sliding times up to 10,000 s and developed texture. Dynamic recrystallization of the tribolayer at a sliding velocity of 1.0 m/s inhibited the growth of a continuous anocrystalline tribolayer.