993 resultados para Ultracold neutrons, CP violation, neutron electric dipole moment
Resumo:
An effective treatment of the intramolecular degrees of freedom is presented for water, where these modes are decoupled from the intermolecular ones, ""adiabatically"" allowing these coordinates to be positioned at their local minimum of the potential energy surface. We perform ab initio Monte Carlo simulations with the configurational energies obtained via density functional theory. We study a water dimer as a prototype system, and even in this simple case the intramolecular relaxations are very important to properly describe properties such as the dipole moment. We show that rigid simulations do not correctly sample the phase space, resulting in an average dipole moment smaller than the one obtained with the adiabatic model, which is closer to the experimental result. (c) 2008 American Institute of Physics.
Resumo:
In this work, we report a density functional theory study of nitric oxide (NO) adsorption on close-packed transition metal (TM) Rh(111), Ir(111), Pd(111) and Pt(111) surfaces in terms of adsorption sites, binding mechanism and charge transfer at a coverage of Theta(NO) = 0.25, 0.50, 0.75 monolayer (ML). Based on our study, an unified picture for the interaction between NO and TM(111) and site preference is established, and valuable insights are obtained. At low coverage (0.25 ML), we find that the interaction of NO/TM(111) is determined by an electron donation and back-donation process via the interplay between NO 5 sigma/2 pi* and TM d-bands. The extent of the donation and back-donation depends critically on the coordination number (adsorption sites) and TM d-band filling, and plays an essential role for NO adsorption on TM surfaces. DFT calculations shows that for TMs with high d-band filling such as Pd and Pt, hollow-site NO is energetically the most favorable, and top-site NO prefers to tilt away from the normal direction. While for TMs with low d-band filling (Rh and Ir), top-site NO perpendicular to the surfaces is energetically most favorable. Electronic structure analysis show that irrespective of the TM and adsorption site, there is a net charge transfer from the substrate to the adsorbate due to overwhelming back-donation from the TM substrate to the adsorbed NO molecules. The adsorption-induced change of the work function with respect to bare surfaces and dipole moment is however site dependent, and the work function increases for hollow-site NO, but decreases for top-site NO, because of differences in the charge redistribution. The interplay between the energetics, lateral interaction and charge transfer, which is element dependent, rationalizes the structural evolution of NO adsorption on TM(111) surfaces in the submonolayer regime.
Resumo:
We study the free-fall of a quantum particle in the context of noncommutative quantum mechanics (NCQM). Assuming noncommutativity of the canonical type between the coordinates of a two-dimensional configuration space, we consider a neutral particle trapped in a gravitational well and exactly solve the energy eigenvalue problem. By resorting to experimental data from the GRANIT experiment, in which the first energy levels of freely falling quantum ultracold neutrons were determined, we impose an upper-bound on the noncommutativity parameter. We also investigate the time of flight of a quantum particle moving in a uniform gravitational field in NCQM. This is related to the weak equivalence principle. As we consider stationary, energy eigenstates, i.e., delocalized states, the time of flight must be measured by a quantum clock, suitably coupled to the particle. By considering the clock as a small perturbation, we solve the (stationary) scattering problem associated and show that the time of flight is equal to the classical result, when the measurement is made far from the turning point. This result is interpreted as an extension of the equivalence principle to the realm of NCQM. (C) 2010 American Institute of Physics. [doi:10.1063/1.3466812]
Resumo:
The low-lying doublet and quartet electronic states of the species SeF correlating with the first dissociation channel are investigated theoretically at a high-level of electronic correlation treatment, namely, the complete active space self-consistent field/multireference single and double excitations configuration interaction (CASSCF/MRSDCI) using a quintuple-zeta quality basis set including a relativistic effective core potential for the selenium atom. Potential energy curves for (Lambda+S) states and the corresponding spectroscopic properties are derived that allows for an unambiguous assignment of the only spectrum known experimentally as due to a spin-forbidden X (2)Pi-a (4)Sigma(-) transition, and not a A (2)Pi-X (2)Pi transition as assumed so far. For the bound excited doublets, yet unknown experimentally, this study is the first theoretical characterization of their spectroscopic properties. Also the spin-orbit coupling constant function for the X (2)Pi state is derived as well as the spin-orbit coupling matrix element between the X (2)Pi and a (4)Sigma(-) states. Dipole moment functions and vibrationally averaged dipole moments show SeF to be a very polar species. An overview of the lowest-lying spin-orbit (Omega) states completes this description. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3426315]
Resumo:
Tuberculosis is an infection caused mainly by Mycobacterium tuberculosis. A first-line antimycobacterial drug is pyrazinamide (PZA), which acts partially as a prodrug activated by a pyrazinamidase releasing the active agent, pyrazinoic acid (POA). As pyrazinoic acid presents some difficulty to cross the mycobacterial cell wall, and also the pyrazinamide-resistant strains do not express the pyrazinamidase, a set of pyrazinoic acid esters have been evaluated as antimycobacterial agents. In this work, a QSAR approach was applied to a set of forty-three pyrazinoates against M. tuberculosis ATCC 27294, using genetic algorithm function and partial least squares regression (WOLF 5.5 program). The independent variables selected were the Balaban index (I), calculated n-octanol/water partition coefficient (ClogP), van-der-Waals surface area, dipole moment, and stretching-energy contribution. The final QSAR model (N = 32, r(2) = 0.68, q(2) = 0.59, LOF = 0.25, and LSE = 0.19) was fully validated employing leave-N-out cross-validation and y-scrambling techniques. The test set (N = 11) presented an external prediction power of 73%. In conclusion, the QSAR model generated can be used as a valuable tool to optimize the activity of future pyrazinoic acid esters in the designing of new antituberculosis agents.
Resumo:
The Topliss method was used to guide a synthetic path in support of drug discovery efforts toward the identification of potent antimycobacterial agents. Salicylic acid and its derivatives, p-chloro, p-methoxy, and m-chlorosalicylic acid, exemplify a series of synthetic compounds whose minimum inhibitory concentrations for a strain of Mycobacterium were determined and compared to those of the reference drug, p-aminosalicylic acid. Several physicochemical descriptors (including Hammett`s sigma constant, ionization constant, dipole moment, Hansch constant, calculated partition coefficient, Sterimol-L and -B-4 and molecular volume) were considered to elucidate structure-activity relationships. Molecular electrostatic potential and molecular dipole moment maps were also calculated using the AM1 semi-empirical method. Among the new derivatives, m-chlorosalicylic acid showed the lowest minimum inhibitory concentration. The overall results suggest that both physicochemical properties and electronic features may influence the biological activity of this series of antimycobacterial agents and thus should be considered in designing new p-aminosalicylic acid analogs.
Resumo:
The minimal supersymmetric standard model involves a rather restrictive Higgs potential with two Higgs fields. Recently, the full set of classes of symmetries allowed in the most general two-Higgs-doublet model was identified; these classes do not include the supersymmetric limit as a particular class. Thus, a physically meaningful definition of the supersymmetric limit must involve the interaction of the Higgs sector with other sectors of the theory. Here we show how one can construct basis invariant probes of supersymmetry involving both the Higgs sector and the gaugino-Higgsino-Higgs interactions.
Resumo:
The discovery of neutrino oscillations provides a solid evidence for nonzero neutrino masses and leptonic mixing. The fact that neutrino masses are so tiny constitutes a puzzling problem in particle physics. From the theoretical viewpoint, the smallness of neutrino masses can be elegantly explained through the seesaw mechanism. Another challenging issue for particle physics and cosmology is the explanation of the matter-antimatter asymmetry observed in Nature. Among the viable mechanisms, leptogenesis is a simple and well-motivated framework. In this paper we briefly review these aspects, making emphasis on the possibility of linking neutrino physics to the cosmological bary asymmetry originated from leptogenesis.
Resumo:
LHC has found hints for a Higgs particle of 125 GeV. We investigate the possibility that such a particle is a mixture of scalar and pseudoscalar states. For definiteness, we concentrate on a two-Higgs doublet model with explicit CP violation and soft Z(2) violation. Including all Higgs production mechanisms, we determine the current constraints obtained by comparing h -> yy with h -> VV*, and comment on the information which can be gained by measurements of h -> b (b) over bar. We find bounds vertical bar s(2)vertical bar less than or similar to 0.83 at one sigma, where vertical bar s(2)vertical bar = 0 (vertical bar s(2)vertical bar = 1) corresponds to a pure scalar (pure pseudoscalar) state.
Resumo:
We classify all possible implementations of an Abelian symmetry in the two-Higgs-doublet model with fermions. We identify those symmetries which are consistent with nonvanishing quark masses and a Cabibbo-Kobayashi-Maskawa quark-mixing matrix (CKM), which is not block-diagonal. Our analysis takes us from a plethora of possibilities down to 246 relevant cases, requiring only 34 distinct matrix forms. We show that applying Z(n) with n >= 4 to the scalar sector leads to a continuous U(1) symmetry in the whole Lagrangian. Finally, we address the possibilities of spontaneous CP violation and of natural suppression of the flavor-changing neutral currents. We explain why our work is relevant even for non-Abelian symmetries.
Resumo:
We produce five flavour models for the lepton sector. All five models fit perfectly well - at the 1 sigma level - the existing data on the neutrino mass-squared differences and on the lepton mixing angles. The models are based on the type I seesaw mechanism, on a Z(2) symmetry for each lepton flavour, and either on a (spontaneously broken) symmetry under the interchange of two lepton flavours or on a (spontaneously broken) CP symmetry incorporating that interchange - or on both symmetries simultaneously. Each model makes definite predictions both for the scale of the neutrino masses and for the phase delta in lepton mixing; the fifth model also predicts a correlation between the lepton mixing angles theta(12) and theta(23).
Resumo:
The possibility of creating baryon asymmetry at the electroweak phase transition in the minimal supersymmetric standard model is considered for the case when right-handed squarks are much lighter than left-handed ones. It is shown that the usual requirement upsilon(T-c)/T-c greater than or similar to 1 for baryogenesis can be satisfied in a range of the parameters of the model, consistent with present experimental bounds.
Resumo:
We investigate the scenario of resonant thermal leptogenesis, in which the leptonic asymmetries are generated through renormalization group corrections induced at the leptogenesis scale. In the framework of the standard model extended by three heavy Majorana neutrinos with masses M(1) = M(2) << M(3) at some high scale, we show that the mass splitting and CP-violating effects induced by renormalization group corrections can lead to values of the CP asymmetries large enough for a successful leptogenesis. In this scenario, the low-energy neutrino oscillation data can also be easily accommodated. The possibility of having an underlying symmetry behind the degeneracy in the right-handed neutrino mass spectrum is also discussed. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The most general Two Higgs Doublet Model potential without explicit CP violation depends on 10 real independent parameters. Excluding spontaneous CP violation results in two 7 parameter models. Although both models give rise to 5 scalar particles and 2 mixing angles, the resulting phenomenology of the scalar sectors is different. If flavour changing neutral currents at tree level are to be avoided, one has, in both cases, four alternative ways of introducing the fermion couplings. In one of these models the mixing angle of the CP even sector can be chosen in such a way that the fermion couplings to the lightest scalar Higgs boson vanishes. At the same time it is possible to suppress the fermion couplings to the charged and pseudo-scalar Higgs bosons by appropriately choosing the mixing angle of the CP odd sector. We investigate the phenomenology of both models in the fermiophobic limit and present the different branching ratios for the decays of the scalar particles. We use the present experimental results from the LEP collider to constrain the models.
Resumo:
We suggest that the weak-basis independent condition det(M-nu) = 0 for the effective neutrino mass matrix can be used in order to remove the ambiguities in the reconstruction of the neutrino mass matrix from input data available from present and future feasible experiments. In this framework, we study the full reconstruction of M-nu with special emphasis on the correlation between the Majorana CP-violating phase and the various mixing angles. The impact of the recent KamLAND results on the effective neutrino mass parameter is also briefly discussed. (C) 2003 Elsevier Science B.V. All rights reserved.