985 resultados para UP-CONVERSION LUMINESCENCE
Resumo:
Sphere NH4Y1.9Eu0.1F7 nanoparticles were successfully synthesized by a hydrothermal method at 180 degrees C for 10 h. SEM and TEM images show the particles are spheres and have lots of hollows in them. The mean particle size is about 60 nm. The shape and size of the particles can be controlled by changing temperature and time of reactants. The luminescent property of the sample indicates that strong emission peaks of the Eu3+ ions are located at about 589 and 612 mm.
Resumo:
Spherical SiO2 particles have been coated with rare earth oxide layers by a Pechini sol-gel process, leading to the formation of core-shell structured SiO2@RE2O3 (RE = rare earth elements) and SiO2@Gd2O3:Ln(3+) (Ln = Eu, Tb, Dy, Sm, Er, Ho) particles. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), photoluminescence (PL), and cathodoluminescence spectra as well as lifetimes were used to characterize the resulting SiO2@RE2O3 (RE = rare earth elements) and SiO2@Gd2O3:Ln(3+) (Eu3+, Tb3+, Dy3+, Sm3+, Er3+, Ho3+) samples. The obtained core-shell phosphors have perfect spherical shape with narrow size distribution (average size ca. 380 nm), smooth surface and non-agglomeration. The thickness of shells could be easily controlled by changing the number of deposition cycles (40 nm for two deposition cycles).
Resumo:
Three-dimensional flowerlike Lu2O3 and Lu2O3:Ln(3+) (Ln = Eu, Th, Dy, Pr, Sm, Er, Ho, Tm) microarchitectures have been successfully synthesized via ethylene glycol (EG)-mediated hydrothermal method followed by a subsequent heat treatment process. X-ray diffraction, Fourier transform infrared spectroscopy, energy-dispersive X-ray spectra, thermogravimetric and differential thermal analysis, elemental analysis, inductively coupled plasma atomic absorption spectrometric analysis, ion chromatogram analysis, X-ray photoelectron spectra, scanning electron microscopy, transmission electron microscopy, photoluminescence spectra as well kinetic decays, and cathodoluminescence spectra were used to characterize the samples. Hydrothermal temperature, EG, and CH3COONa play critical roles in the formation of the lutetium oxide precursor microflowers. The reaction mechanism and the self-assembly evolution process have been proposed. The as-formed lutetium oxide precursor could transform to Lu2O3 With their original flowerlike morphology and slight shrinkage in the size after postannealing process.
Resumo:
The large-scale synthesis of the metal-organic framework Eu(1,3,5-BTC)center dot 6H(2)O nanocrystallites with delicate morphologies such as sheaflike, butterflylike, and flowerlike superstructures composed of nanowires have been realized via a simple solution phase method at room temperature. Time-dependent experiments indicate that these superstructures were constructed by the splitting crystal growth mechanism, as has been noted in some minerals in nature. The synthetic parameters such as reaction time, concentration and molar ratio of reactants, surfactant, and reaction temperature all affected the morphology of the Eu(1,3,5-BTC)center dot 6H(2)O architectures. These well-arranged architectures exhibit red emission corresponding to the D-5(0) -> F-7(2) transition of the Eu3+ ions under UV light excitation, and the lifetime is determined to be about 0.22 ms.
Resumo:
Uniform Lu2O3:Eu3+ nanorods and nanowires have been successfully prepared through a simple solution-based hydrothermal process followed by a subsequent calcination process without using any surfactant, catalyst, or template. On the basis of X-ray diffraction, thermogravimetric analysis and differential scanning calorimetry, and Fourier transform infrared spectroscopy results, it can be assumed that the as-obtained precursors have the structure formula of Lu4O(OH)(9)(NO3), which is a new phase and has not been reported. The morphology of the precursors could be modulated from nanorods to nanowires with the increase of pH value using ammonia solution. The as-formed precursors could transform to cubic Lu2O3:Eu3+ with the same morphology and a slight shrinkage in size after an annealing process, Both the Lu2O3:Eu3+ nanorods and nanowires exhibit the strong red emission corresponding to the D-5(0)-F-7(2) transition of the Eu3+ ions under UV light excitation or low-voltage electron beam excitation.
Resumo:
beta-NaYF4:Ln(3+) (Ln = Eu, Tb, Yb/Er, and Yb/Tm) hexagonal microprisms with remarkably uniform morphology and size have been synthesized via a facile hydrothermal route. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and photoluminescence (PL) spectra as well as kinetic decays were used to characterize the samples. It is found that sodium citrate as a shape modifier introduced into the reaction system plays a critical role in the shape evolution of the final products. Furthermore, the shape and size of the products can be further manipulated by adjusting the molar ratio of citrate/RE3+ (RE represents the total amount of Y3+ and the doped rare earth elements such as Eu3+, Tb3+, Yb3+/Er3+, or Yb3+/Tm3+). Under the excitation of 397 nm ultraviolet light, NaYF4:xEu(3+) (x = 1.5, 5%) shows the emission lines of Eu3+ corresponding to D-5(0-3) -> F-7(J) (J = 0-4) transitions from 400 to 700 nm (whole visible spectral region) with different intensity, resulting in yellow and red down-conversion (DC) light emissions, respectively.
Resumo:
SrLa1-xRExGa3O7 (RE = EU3+, Tb3+) phosphor films were deposited on quartz glass substrates by a simple Pechim sol-gel method. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), atomic force microscopy, field-emission scanning electron microscopy, photoluminescence spectra, and lifetimes were used to characterize the resulting films. The results of XRD indicated that the films began to crystallize at 700 degrees C and crystallized fully at 900 degrees C. The results of FNR spectra were in agreement with those of XRD. Uniform and crack-free films annealed at 900 degrees C were obtained with average grain size of 80 nm, root mean square roughness of 46 nm and thickness of 130 nm The RE ions showed their characteristic emission in crystalline SrLa1-xRExGa3O7 films, i.e., Eu3+ D-0-F-7(J) (J = 0, 1, 2, 3, 4), Tb3+5D4 -(7) F-J (J = 6, 5, 4, 3) emissions, respectively. The optimum concentrations (x) of Eu3+ and Tb3+ were determined to be 50, and 80 mol% in SrLa(1-x)RE(x)GGa(3)O(7) films, respectively.
Resumo:
CeF3, CeF3:Tb3+, and CeF3:Tb3+/LaF3 (core/shell) nanoparticles were prepared by the polyol method and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), UV-vis absorption spectra, photoluminescence (PL) spectra, and lifetimes. The results of XRD indicate that the obtained CeF3, CeF3:Tb3+, and CeF3:Tb3+/LaF3 (core/shell) nanoparticles crystallized well at 200 degrees C in diethylene glycol (DEG) with a hexagonal structure. The TEM images illustrate that the CeF3 and CeF3:Tb3+ nanoparticles are spherical with a mean diameter of 7 nm. The growth of the LaF3 shell around the CeF3:Tb3+ core nanoparticles resulted in an increase of the average size (11 nm) of the nanopaticles as well as in a broadening of their size distribution. These nanocrystals can be well-dispersed in ethanol to form clear colloidal solutions. The colloidal solutions of CeF3 and CeF3:Tb3+ show the characteristic emission of Ce3+ 5d-4f (320 nm) and Tb3+ D-5(4)-F-7(J) (J = 6-3, with D-5(4)-F-7(5) green emission at 542 nm as the strongest one) transitions, respectively. The emission intensity and lifetime of the CeF3:Tb3+/LaF3 (core/shell) nanoparticles increased with respect to those of CeF3:Tb3+ core particles.
Resumo:
The density matrix resonant two-photon absorption (TPA) theory is applied to a rare-earth ion-doped laser crystal. TPA cross sections for transitions from the ground state to the first 4f5d state in Pr3+:YAG are calculated. The results indicate the density matrix TPA theory is attractive in studying TPA in laser crystals. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The density matrix resonant two-photon absorption (TPA) theory applicable to laser crystals doped with rare earth ions is described. Using this theory, resonant TPA cross sections for transitions from the ground state to the second excited state of the 4f5d configuration in cm(4)s Pr3+:Y3Al5O12 are calculated. The peak value of TPA cross section calculated is 2.75 x 10(-50) cm(4)s which is very close to the previous experimental value 4 x 10(-50) cm(4) s. The good agreement of calculated data with measured values demonstrates that the density matrix resonant TPA theory can predict resonant TPA intensity much better than the standard second-order perturbation TPA theory.
Resumo:
Flexible radio transmitters based on the Software-Defined Radio (SDR) concept are gaining an increased research importance due to the unparalleled proliferation of new wireless standards operating at different frequencies, using dissimilar coding and modulation schemes, and targeted for different ends. In this new wireless communications paradigm, the physical layer of the radio transmitter must be able to support the simultaneous transmission of multi-band, multi-rate, multi-standard signals, which in practice is very hard or very inefficient to implement using conventional approaches. Nevertheless, the last developments in this field include novel all-digital transmitter architectures where the radio datapath is digital from the baseband up to the RF stage. Such concept has inherent high flexibility and poses an important step towards the development of SDR-based transmitters. However, the truth is that implementing such radio for a real world communications scenario is a challenging task, where a few key limitations are still preventing a wider adoption of this concept. This thesis aims exactly to address some of these limitations by proposing and implementing innovative all-digital transmitter architectures with inherent higher flexibility and integration, and where improving important figures of merit, such as coding efficiency, signal-to-noise ratio, usable bandwidth and in-band and out-of-band noise will also be addressed. In the first part of this thesis, the concept of transmitting RF data using an entirely digital approach based on pulsed modulation is introduced. A comparison between several implementation technologies is also presented, allowing to state that FPGAs provide an interesting compromise between performance, power efficiency and flexibility, thus making them an interesting choice as an enabling technology for pulse-based all-digital transmitters. Following this discussion, the fundamental concepts inherent to pulsed modulators, its key advantages, main limitations and typical enhancements suitable for all-digital transmitters are also presented. The recent advances regarding the two most common classes of pulse modulated transmitters, namely the RF and the baseband-level are introduced, along with several examples of state-of-the-art architectures found on the literature. The core of this dissertation containing the main developments achieved during this PhD work is then presented and discussed. The first key contribution to the state-of-the-art presented here consists in the development of a novel ΣΔ-based all-digital transmitter architecture capable of multiband and multi-standard data transmission in a very flexible and integrated way, where the pulsed RF output operating in the microwave frequency range is generated inside a single FPGA device. A fundamental contribution regarding the simultaneous transmission of multiple RF signals is then introduced by presenting and describing novel all-digital transmitter architectures that take advantage of multi-gigabit data serializers available on current high-end FPGAs in order to transmit in a time-interleaved approach multiple independent RF carriers. Further improvements in this design approach allowed to provide a two-stage up-conversion transmitter architecture enabling the fine frequency tuning of concurrent multichannel multi-standard signals. Finally, further improvements regarding two key limitations inherent to current all-digital transmitter approaches are then addressed, namely the poor coding efficiency and the combined high quality factor and tunability requirements of the RF output filter. The followed design approach based on poliphase multipath circuits allowed to create a new FPGA-embedded agile transmitter architecture that significantly improves important figures of merit, such as coding efficiency and SNR, while maintains the high flexibility that is required for supporting multichannel multimode data transmission.
Resumo:
The sequential Monte Carlo/CASPT2 approach was employed to investigate deactivation and emission processes from the lowest-lying pi pi * and n pi * excited states of 9H-adenine in aqueous solution. It is found that conical intersections connecting the pi pi* and n pi* states with the ground state are also present in solution, whereas the barriers for the deactivation paths are significantly smaller on solvated conditions. The large destabilization of the n pi* state found in solution possibly prevents its involvement in the deactivation photophysics and explains the change from a bi- to a mono-exponential decay for the molecule in the gas phase and solution, respectively. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The nonadiabatic photochemistry of the guanine molecule (2-amino-6-oxopurine) and some of its tautomers has been studied by means of the high-level theoretical ab initio quantum chemistry methods CASSCF and CASPT2. Accurate computations, based by the first time on minimum energy reaction paths, states minima, transition states, reaction barriers, and conical intersections on the potential energy hypersurfaces of the molecules lead to interpret the photochemistry of guanine and derivatives within a three-state model. As in the other purine DNA nucleobase, adenine, the ultrafast subpicosecond fluorescence decay measured in guanine is attributed to the barrierless character of the path leading from the initially populated (1)(pi pi* L-a) spectroscopic state of the molecule toward the low-lying methanamine-like conical intersection (gs/pi pi* L-a)(CI). On the contrary, other tautomers are shown to have a reaction energy barrier along the main relaxation profile. A second, slower decay is attributed to a path involving switches toward two other states, (1)(pi pi* L-b) and, in particular, (1)(n(o)pi*), ultimately leading to conical intersections with the ground state. A common framework for the ultrafast relaxation of the natural nucleobases is obtained in which the predominant role of a pi pi*-type state is confirmed.
Resumo:
Crystallization of binary InF3-MF2 and GaF3-MF2 (where M = Ba, Sr and Ca) glasses was studied. Characteristic temperatures and kinetic parameters E (activation energy) and n (Avrami exponent) were obtained. Stability against devitrification is discussed in terms of the above cited parameters and also of some others parameters proposed in literature. Optical properties (IR and upconversion emissions) are reported in different crystallized samples containing Nd3+. The main observation is that up conversion emission presents an enhanced sensibility to crystallization when compared to conventional emission. © 1997 Published by Elsevier Science B.V.
Resumo:
Experimental results are reported which show a strong evidence of energy transfer between Ho 3+ ions in a fluoroindate glass excited by a pulsed laser operating at 640 nm. We identified the origin of the blue and green upconverted fluorescence observed as being due to a Ho 3+-Ho 3+ pair interaction process. The dynamics of the fluorescence revealed the pathways involved in the energy transfer assisted upconversion process. © 2002 American Institute of Physics.