427 resultados para Tyr.
Resumo:
Nine bradykinin-related peptides were identified in Phyllomedusa sauvagei skin secretion using QTOF MS/MS fragmentation sequencing. The major peptides were (Thr6)-bradykinin, (Hyp3, Thr6)-bradykinin, (Thr6)-phyllokinin and (Hyp3, Thr6)-phyllokinin. The phyllokinins occurred in both sulfated and non-sulfated forms. All (Thr6)-substituted bradykinins/phyllokinins could be generated from a common precursor by differential post-translational processing and modification. The open-reading frame of the cloned precursor cDNA consisted of 62 amino acid residues with a single bradykinin/phyllokinin coding sequence located at the C-terminus. Structural features included a Glu-Arg processing site at the N-terminus of the bradykinin/phyllokinin domain and the absence of an acidic amino acid residue adjacent to the C-terminal Tyr residue in the phyllokinins. However, the neutral amino acid residue (Ile) at position -1 and the basic amino acid residue (Arg) at position -2 from the Tyr residue, constitute a sulfation motif previously identified only in a protochordean.
Resumo:
Synthetic bradykinin antagonist peptides/peptoids have been powerful tools for delineating the roles of kinins in both normal physiology and in pathological states. Here, we report the identification of a novel, naturally occurring bradykinin B2 receptor antagonist peptide, helokinestatin, isolated and structurally characterized from the venoms of helodermatid lizards—the Gila monster (Heloderma suspectum) and the Mexican beaded lizard (Heloderma horridum). The primary structure of the peptide was established by a combination of microsequencing and mass spectroscopy as Gly-Pro-Pro-Tyr-Gln-Pro-Leu-Val-Pro-Arg (Mr 1122.62). A synthetic replicate of helokinestatin was found to inhibit bradykinin-induced vasorelaxation of phenylephrine pre-constricted rat tail artery smooth muscle, mediated by the B2 receptor sub-type, in a dose-dependent manner. Natural selection, that generates functional optimization of predatory reptile venom peptides, can potentially provide new insights for drug lead design or for normal physiological or pathophysiological processes.
Resumo:
Glucose-dependent insulinotropic polypeptide (GIP) is an important gastrointestinal hormone, which regulates insulin release and glucose homeostasis, but is rapidly inactivated by enzymatic N-terminal truncation. Here we report the enzyme resistance and biological activity of several Glu(3) -substituted analogues of GIP namely; (Ala(3))GIP, (Lys(3))GIP, (Phe(3))GIP, (Trp(3))GIP and (Tyr(3))GIP. Only (Lys(3))- GIP demonstrated moderately enhanced resistance to DPP-IV (p <0.05 to p <0.01) compared to native GIP. All analogues demonstrated a decreased potency in cAMP production (EC50 1.47 to 11.02 nM; p <0.01 to p <0.001) with (Lys(3))GIP and (Phe(3))GIP significantly inhibiting GIP-stimulated cAMP production (p <0.05). In BRIN-BD11 cells, (Lys(3))GIP, (Phe(3))GIP, (Trp(3))GIP and (Tyr(3))- GIP did not stimulate insulin secretion with both (Lys(3))GIP and (Phe(3))GIP significantly inhibiting GIP-stimulated insulin secretion (p <0.05). Injection of each GIP analogue together with glucose in oblob mice significantly increased the glycaemic excursion compared to control (p <0.05 to p <0.001). This was associated with lack of significant insulin responses. (Ala(3))GIP, (Phe(3))GIP and (Tyr(3))GIP, when administered together with GIP, significantly reduced plasma insulin (p <0.05 top <0.01) and impaired the glucose-lowering ability (p <0.05 to p <0.01) of the native peptide. The DPP-IV resistance and GIP antagonism observed were similar but less pronounced than (Pro(3))GIP. These data demonstrate that position 3 amino acid substitution of GIP with (Ala(3)), (Phe(3)), (Tyr(3)) or (Pro(3)) provides a new class of functional GIP receptor antagonists. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Glucose-dependent insulinotropic polypeptide (GIP) has significant potential in diabetes therapy due to its ability to serve as a glucose-dependent activator of insulin secretion. However, its biological activity is severely compromised by the ubiquitous enzyme dipeptidylpeptidase IV (DPP IV), which removes the N-terminal Tyr(1)-Ala(2) dipeptide from GIP. Therefore, 2 novel N-terminal Ala(2)-substituted analogs of GIP, with Ala substituted by 2-aminobutyric acid (Abu) or sarcosine (Sar), were synthesized and tested for metabolic stability and biological activity both in vitro and in vivo. Incubation with DPP IV gave half-lives for degradation of native GIP, (Abu(2))GIP, and (Sar(2))GIP to be 2.3, 1.9, and 1.6 hours, respectively, while in human plasma, the half-lives were 6.2, 7.6, and 5.4 hours, respectively. In Chinese hamster lung (CHL) cells expressing the cloned human GIP receptor, native GIP, (Abu(2))GIP, and (Sar(2))GIP dose-dependently stimulated cyclic adenosine monophosphate (camp) production with EC50 values of 18.2, 38.5, and 54.6 nmol/L, respectively. In BRIN-BD11 cells, both (Abu(2))GIP and (Sar(2))GIP (10(-13) to 10(-8) mol/L) dose-dependently stimulated insulin secretion with significantly enhanced effects at 16.7 mmol/L compared with 5.6 mmol/L glucose. In obese diabetic (ob/ob) mice, GIP and (Sar(2))GIP significantly increased (1.4-fold to 1.5-fold; P <.05) plasma insulin concentrations, whereas (Abu(2))GIP exerted only minor effects. Changes in plasma glucose were small reflecting the severe insulin resistance of this mutant. The present data show that substitution of the penultimate N-terminal Ala(2) in GIP by Abu or Sar results in analogs with moderately reduced metabolic stability and biological activity in vitro, but with preserved biological activity in vivo. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
Tachykinins are among the most widely-studied families of regulatory peptides characterized by a highly-conserved C-terminal -Phe-X-Gly-Leu-Met.amide motif, which also constitutes the essential bioactive core. The amphibian skin has proved to be a rich source of these peptides with physalaemin from the skin of Physalaemus fuscomaculatus representing the archetypal aromatic tachykinin (X = Tyr or Phe) and kassinin from the skin of Kassina senegalensis representing the archetypal aliphatic tachykinin in which X = Val or Ile. Despite the primary structures of both mature peptides having been known for at least 30 years, neither the structures nor organizations of their biosynthetic precursors have been reported. Here we report the structure and organization of the biosynthetic precursor of kassinin deduced from cDNA cloned from a skin secretion library. In addition, a second precursor cDNA encoding the novel kassinin analog (Thr2, Ile9)-kassinin was identified as was the predicted mature peptide in skin secretion. Both transcripts exhibited a high degree of nucleotide sequence similarity and of open-reading frame translated amino acid sequences of putative precursor proteins. The translated preprotachykinins each consisted of 80 amino acid residues encoding single copies of either kassinin or its site-substituted analog. Synthetic replicates of each kassinin were found to be active on rat urinary bladder smooth muscle at nanomolar concentrations. The structural organization of both preprotachykinins differs from that previously reported for those of Odorrana grahami skin indicating a spectrum of diversity akin to that established for amphibian skin preprobradykinins.
Resumo:
3-Phosphoinositide-dependent protein kinase-1 (PDK1) appears to play a central regulatory role in many cell signalings between phosphoinositide-3 kinase and various intracellular serine/threonine kinases. In resting cells, PDK1 is known to be constitutively active and is further activated by tyrosine phosphorylation (Tyr(9) and Tyr(373/376)) following the treatment of the cell with insulin or pervanadate. However, little is known about the mechanisms for this additional activation of PDK1. Here, we report that the SH2 domain of Src, Crk, and GAP recognized tyrosine-phosphorylated PDK1 in vitro. Destabilization of PDK1 induced by geldanamycin (a Hsp90 inhibitor) was partially blocked in HEK 293 cells expressing PDK1- Y9F. Co-expression of Hsp90 enhanced PDK1-Src complex formation and led to further increased PDK1 activity toward PKB and SGK. Immunohistochemical analysis with anti- phospho-Tyr9 antibodies showed that the level of Tyr9 phosphorylation was markedly increased in tumor samples compared with normal. Taken together, these data suggest that phosphorylation of PDK1 on Tyr9, distinct from Tyr373/376, is important for PDK1/Src complex formation, leading to PDK1 activation. Furthermore, Tyr9 phosphorylation is critical for the stabilization of both PDK1 and the PDK1/Src complex via Hsp90-mediated protection of PDK1 degradation.
Resumo:
3-Phosphoinositide-dependent protein kinase-1 (PDK1) plays a central role in signal transduction pathways that activate phosphoinositide 3-kinase. Despite its key role as an upstream activator of enzymes such as protein kinase B and p70 ribosomal protein S6 kinase, the regulatory mechanisms controlling PDK1 activity are poorly understood. PDK1 has been reported to be constitutively active in resting cells and not further activated by growth factor stimulation (Casamayor, A., Morrice, N. A., and Alessi, D. R. (1999) Biochem. J. 342, 287-292). Here, we report that PDK1 becomes tyrosine-phosphorylated and translocates to the plasma membrane in response to pervanadate and insulin. Following pervanadate treatment, PDK1 kinase activity increased 1.5- to 3-fold whereas the activity of PDK1 associated with the plasma membrane increased similar to6-fold. The activity of PDK1 localized to the plasma membrane was also increased by insulin treatment. Three tyrosine phosphorylation sites of PDK1 (Tyr-9 and Tyr-373/376) were identified using in vivo labeling and mass spectrometry. Using site-directed mutants, we show that, although phosphorylation on Tyr-373/376 is important for PDK1 activity, phosphorylation on Tyr-9 has no effect on the activity of the kinase. Both of these residues can be phosphorylated by v-Src tyrosine kinase in vitro, and co-expression of v-Src leads to tyrosine phosphorylation and activation of PDK1. Thus, these data suggest that PDK1 activity is regulated by reversible phosphorylation, possibly by a member of the Src kinase family.
The inhibitor profiling of the caspase family of proteases using substrate-derived peptide glyoxals.
Resumo:
A series of substrate-based a-keto-ß-aldehyde (glyoxal) sequences have been synthesised and evaluated as inhibitors of the caspase family of cysteine proteases. A number of potent inhibitor sequences have been identified. For example, a palmitic acid containing sequence pal-Tyr-Val-Ala-Asp-glyoxal was demonstrated to be an extremely effective inhibitor of caspase-1, inhibiting not only the action of the protease against synthetic fluorogenic substrates (Ki = 0.3 nM) but also blocking its processing of pro-interleukin-1beta (pro-IL-1ß). In addition, the peptide Ac-Asp-Glu-Val-Asp-glyoxal, which is based on the consensus cleavage sequence for caspase-3, is a potent inhibitor of this protease (Ki = 0.26 nM) yet only functions as a comparatively modest inhibitor of caspase-1 (Ki = 451 nM). Potent inhibitor sequences were also identified for caspases-6 and -8. However, the degree of discrimination between the family members is limited. The ability of Ac-Asp-Glu-Val-Asp-glyoxal to block caspase-3 like activity in whole cells and to delay the development of apoptosis was assessed. When tested against caspase-3 like activity in cell lysates, Ac-Asp-Glu-Val-Asp-glyoxal displayed effective inhibition similar to that observed against recombinant caspase-3. Treatment of whole cells with this potent caspase-3 inhibitor was however, not sufficient to significantly stall the development of apoptosis in-vitro.
Resumo:
Previous studies have shown that glycation of insulin occurs in pancreatic beta -cells under conditions of hyperglycaemia and that the site of glycation is the N-terminal Phe(1) of the insulin B-chain. To enable evaluation of glycated insulin in diabetes, specific antibodies were raised in rabbits and guinea-pigs by using two synthetic peptides (A: Phe-Val-Asn-Gln-His-Leu-Cys-Tyr, and B: Phe-Val-Asn-Gln-His-Leu-Tyr-Lys) modified by N-terminal glycation and corresponding closely to the N-terminal sequence of the glycated human insulin B-chain. For immunization, the glycated peptides were conjugated either to keyhole limper haemocyanin or ovalbumin using glutaraldehyde, m-maleimidobenzoyl-N-hydroxysuccinimide ester or 1-ethyl-3-(3-dimethylamino propyl) carbodiimide hydrochloride. Antibody titration curves, obtained using I-125-tyrosylated tracer prepared from glycated peptide A, revealed high-titre antisera in five groups of animals immunized for 8-28 weeks. The highest titres were observed in rabbits and guinea-pigs immunized with peptide B coupled to ovalbumin using glutaraldehyde. Under radioimmunoassay conditions, these antisera exhibited effective dose (median) (ED50) values for glycated insulin of 0.3-15 ng/ml and 0.9-2.5 ng/ml respectively, with negligible cross-reactivity against insulin or other islet peptides. The degree of cross-reaction with glycated proinsulin was approximately 50%. Glycated insulin in plasma of control and hydrocortisone-treated diabetic rats measured using rabbit 3 antiserum (1:10 000 dilution; sensitivity
Resumo:
Gastric inhibitory polypeptide (GIP) is an important insulin-releasing hormone of the enteroinsular axis which is rapidly inactivated by the exopeptidase dipeptidyl peptidase (DPP) IV. The present study has examined the ability of Tyr(1)-glucitol GIP to be protected from plasma degradation and to enhance insulin-releasing and antihyperglycaemic activity in 20- to 25-week-old obese diabetic ob/ob mice. Degradation of GIP by incubation at 37 degrees C with obese mouse plasma was clearly evident after 3 h (35% degraded). After 6 h, more than 61% of GIP was converted to GIP(3-42) whereas N-terminally modified Tyr(1)-glucitol GIP was resistant to degradation in plasma (>99% intact after 6 h). The formation of GIP(3-42) was almost completely abolished by inhibition of plasma DPP IV with diprotin A. Effects of GIP and Tyr(1)-glucitol GIP were examined in overnight-fasted obese mice following i.p. injection of either peptide (20 nmol/kg) together with glucose (18 mmol/kg) or in association with feeding. Most prominent effects were observed in the former group where plasma glucose values at 60 min together with the area under the curve (AUC) for glucose were significantly lower following GIP (AUC, 874 +/- 72 mmol/l.min; P
Resumo:
Schistosomes are amongst the most important and neglected pathogens in the world, and schistosomiasis control relies almost exclusively on a single drug. The neuromuscular system of schistosomes is fertile ground for therapeutic intervention, yet the details of physiological events involved in neuromuscular function remain largely unknown. Short amidated neuropeptides, FMRFamide-like peptides (FLPs), are distributed abundantly throughout the nervous system of every flatworm examined and they produce potent myoexcitation. Our goal here was to determine the mechanism by which FLPs elicit contractions of schistosome muscle fibers. Contraction studies showed that the FLP Tyr-Ile-Arg-Phe-amide (YIRFamide) contracts the muscle fibers through a mechanism that requires Ca2+ influx through sarcolemmal voltage operated Ca2+ channels (VOCCs), as the contractions are inhibited by classical VOCC blockers nicardipine, verapamil and methoxyverapamil. Whole-cell patch-clamp experiments revealed that inward currents through VOCCs are significantly and reversibly enhanced by the application of 1 µM YIRFamide; the sustained inward currents were increased to 190% of controls and the peak currents were increased to 180%. In order to examine the biochemical link between the FLP receptor and the VOCCs, PKC inhibitors calphostin C, RO 31–8220 and chelerythrine were tested and all produced concentration dependent block of the contractions elicited by 1 µM YIRFamide. Taken together, the data show that FLPs elicit contractions by enhancing Ca2+ influx through VOCC currents using a PKC-dependent pathway.
Resumo:
DNA-dependent protein kinase (DNA-PK) has been implicated in a variety of nuclear processes including DNA double strand break repair, V(D)J recombination, and transcription. A recent study showed that DNA-PK is responsible for Ser-473 phosphorylation in the hydrophobic motif of protein kinase B (PKB/Akt) in genotoxic-stressed cells, suggesting a novel role for DNA-PK in cell signaling. Here, we report that DNA-PK activity toward PKB peptides is impaired in DNA-PK knock-out mouse embryonic fibroblast cells when compared with wild type. In addition, human glioblastoma cells expressing a mutant form of DNA-PK (M059J) displayed a lower DNA-PK activity when compared with glioblastoma cells expressing wild-type DNA- PK (M059K) when PKB peptide substrates were tested. DNA- PK preferentially phosphorylated PKB on Ser-473 when compared with its known in vitro substrate, p53. A consensus hydrophobic amino acid surrounding the Ser-473 phospho-acceptor site in PKB containing amino acids Phe at position +1 and +4 and Tyr at position -1 are critical for DNA- PK activity. Thus, these data define the specificity of DNA- PK action as a Ser-473 kinase for PKB in DNA repair signaling.
Resumo:
Pseudomonas elastase (LasB), a metalloprotease virulence factor, is known to play a pivotal role in pseudomonal infection. LasB is secreted at the site of infection, where it exerts a proteolytic action that spans from broad tissue destruction to subtle action on components of the host immune system. The former enhances invasiveness by liberating nutrients for continued growth, while the latter exerts an immunomodulatory effect, manipulating the normal immune response. In addition to the extracellular effects of secreted LasB, it also acts within the bacterial cell to trigger the intracellular pathway that initiates growth as a bacterial bio?lm. The key role of LasB in pseudomonal virulence makes it a potential target for the development of an inhibitor as an antimicrobial agent. The concept of inhibition of virulence is a recently established antimicrobial strategy, and such agents have been termed “second-generation” antibiotics. This approach holds promise in that it seeks to attenuate virulence processes without bactericidal action and, hence, without selection pressure for the emergence of resistant strains. A potent inhibitor of LasB,N-mercaptoacetyl-Phe-Tyr-amide (Ki 41 nM) has been developed, and its ability to block these virulence processes has been assessed. It has been demonstrated that thes compound can completely block the action of LasB on protein targets that are instrumental in bio?lm formation and immunomodulation. The novel LasB inhibitor has also been employed in bacterial-cell-based assays, to reduce the growth of pseudomonal bio?lms, and to eradicate bio?lm completely when used in combination with conventional antibiotics.
Resumo:
N-acetylgalactosamine kinase is a member of the GHMP family of small molecule kinases which catalyses the ATP-dependent phosphorylation of N-acetylgalactosamine. It is highly similar in structure and sequence to galactokinase. Alteration of galactokinase at a key tyrosine residue (Tyr-379 in the human enzyme) has been shown to dramatically enhance the substrate range of this enzyme. Here, we investigated the substrate specificity of the wild type N-acetylgalactosamine kinase and demonstrated that it can also catalyse the phosphorylation of N-acetylglucosamine and N-acetylmannosamine. In human N-acetylgalactosamine kinase, the equivalent residue to Tyr-379 in galactokinase is Phe-444. Alteration of this residue did not result in dramatic changes to the specificity of the enzyme. The more relaxed substrate specificity of N-acetylgalactosamine kinase, compared to galactokinase, can be explained by the greater flexibility of a glycine rich loop in the active site of the enzyme. These results suggest that N-acetylgalactosamine kinase is a potential biocatalyst for the phosphorylation of N-acetyl sugars. However, it is unlikely that it will be possible to further broaden the substrate range by alteration of Phe-444.
Resumo:
This study reports the potent myoactivity of flatworm FMRFamide-related peptides (FaRPs) on isolated muscle fibers of the human blood fluke, Schistosoma mansoni. The turbellarian peptides YIRFamide (EC50 4 eta M), GYIRFamide (EC50 1 eta M). and RYIRFamide (EC50 7 eta M), all induced muscle contraction more potently than the cestode FaRP GNFFRFamide (EC50 500 eta M). Using a series of synthetic analogs of the flatworm peptides YIRFamide, GYIRFamide and RYIRFamide, the structure-activity relationships of the muscle FaRP receptor were examined. With a few exceptions, each residue in YIRFamide is important in the maintenance of its myoactivity. Alanine scans resulted in peptides that were inactive (Ala(1), Ala(2), Ala(3) and Ala(4) YIRFamide; Ala(4) and Ala(5) RYIRFamide) or had much reduced potencies (Ala(1), Ala(2) and Ala(3) RYIRFamide). Substitution of the N-terminal (Tyr(1)) residue of YIRFamide with the non-aromatic residues Thr or Arg produced analogs with greatly reduced potency. Replacement of the N-terminal Tyr with aromatic amino acids resulted in myoactive peptides (FIRFamide, EC50 100 eta M; WIRFamide, EC50 0.5 eta M). The activity of YIRFamide analogs which possessed a Leu(2), Phe(2) or Met(2) residue (EC50's 10, 1 and 3 eta M, respectively) instead of Ile(2) was not significantly altered, whereas, YVRFamide had a greatly reduced (EC50 200 eta M) activity. Replacement of the Phe(4) with a Tyr(4) (YIRYamide) also greatly lowered potency. Truncated analogs were either inactive (FRFamide, YRFamide, HRFamide, RFamide, Famide) or had very low potency (IRFamide and MRFamide), with the exception of nLRFamide (EC50 20 eta M). YIRF free acid was inactive. In summary, these data show the general structural requirements of this schistosome muscle FaRP receptor to be similar, but not identical, to those of previously characterized molluscan FaRP receptors. (C) 1997 Elsevier Science Inc.