949 resultados para Two-dimensional stress
Resumo:
A one-parameter class of simple models of two-dimensional dilaton gravity, which can be exactly solved including back-reaction effects, is investigated at both classical and quantum levels. This family contains the RST model as a special case, and it continuously interpolates between models having a flat (Rindler) geometry and a constant curvature metric with a nontrivial dilaton field. The processes of formation of black hole singularities from collapsing matter and Hawking evaporation are considered in detail. Various physical aspects of these geometries are discussed, including the cosmological interpretation.
Resumo:
Probabilistic inversion methods based on Markov chain Monte Carlo (MCMC) simulation are well suited to quantify parameter and model uncertainty of nonlinear inverse problems. Yet, application of such methods to CPU-intensive forward models can be a daunting task, particularly if the parameter space is high dimensional. Here, we present a 2-D pixel-based MCMC inversion of plane-wave electromagnetic (EM) data. Using synthetic data, we investigate how model parameter uncertainty depends on model structure constraints using different norms of the likelihood function and the model constraints, and study the added benefits of joint inversion of EM and electrical resistivity tomography (ERT) data. Our results demonstrate that model structure constraints are necessary to stabilize the MCMC inversion results of a highly discretized model. These constraints decrease model parameter uncertainty and facilitate model interpretation. A drawback is that these constraints may lead to posterior distributions that do not fully include the true underlying model, because some of its features exhibit a low sensitivity to the EM data, and hence are difficult to resolve. This problem can be partly mitigated if the plane-wave EM data is augmented with ERT observations. The hierarchical Bayesian inverse formulation introduced and used herein is able to successfully recover the probabilistic properties of the measurement data errors and a model regularization weight. Application of the proposed inversion methodology to field data from an aquifer demonstrates that the posterior mean model realization is very similar to that derived from a deterministic inversion with similar model constraints.
Resumo:
PURPOSE: To improve coronary magnetic resonance angiography (MRA) by combining a two-dimensional (2D) spatially selective radiofrequency (RF) pulse with a T2 -preparation module ("2D-T2 -Prep"). METHODS: An adiabatic T2 -Prep was modified so that the first and last pulses were of differing spatial selectivity. The first RF pulse was replaced by a 2D pulse, such that a pencil-beam volume is excited. The last RF pulse remains nonselective, thus restoring the T2 -prepared pencil-beam, while tipping the (formerly longitudinal) magnetization outside of the pencil-beam into the transverse plane, where it is then spoiled. Thus, only a cylinder of T2 -prepared tissue remains for imaging. Numerical simulations were followed by phantom validation and in vivo coronary MRA, where the technique was quantitatively evaluated. Reduced field-of-view (rFoV) images were similarly studied. RESULTS: In vivo, full field-of-view 2D-T2 -Prep significantly improved vessel sharpness as compared to conventional T2 -Prep, without adversely affecting signal-to-noise (SNR) or contrast-to-noise ratios (CNR). It also reduced respiratory motion artifacts. In rFoV images, the SNR, CNR, and vessel sharpness decreased, although scan time reduction was 60%. CONCLUSION: When compared with conventional T2 -Prep, the 2D-T2 -Prep improves vessel sharpness and decreases respiratory ghosting while preserving both SNR and CNR. It may also acquire rFoV images for accelerated data acquisition.
Resumo:
To determine the feasibility of data transfer, an interlaboratory comparison was conducted on colon carcinoma cell line (DLD-1) proteins resolved by two-dimensional polyacrylamide gel electrophoresis either on small (6 x 7 cm) or large (16x18 cm) gels. The gels were silver-stained and scanned by laser densitometry, and the image obtained was analyzed using Melanie software. The number of spots detected was 1337+/-161 vs. 2382+/-176 for small vs. large format gels, respectively. After gel calibration using landmarks determined using pl and Mr markers, large- and small-format gels were matched and 712+/-36 proteins were found on both types of gels. Having performed accurate gel matching it was possible to acquire additional information after accessing a 2-D PAGE reference database (http://www.expasy.ch/ cgibin/map2/def?DLD1_HUMAN). Thus, the difference in gel size is not an obstacle for data transfer. This will facilitate exchanges between laboratories or consultation concerning existing databases.
Resumo:
The speed of traveling fronts for a two-dimensional model of a delayed reactiondispersal process is derived analytically and from simulations of molecular dynamics. We show that the one-dimensional (1D) and two-dimensional (2D) versions of a given kernel do not yield always the same speed. It is also shown that the speeds of time-delayed fronts may be higher than those predicted by the corresponding non-delayed models. This result is shown for systems with peaked dispersal kernels which lead to ballistic transport
Resumo:
Comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry was used for the identification of forty doping agents. The improvement in the specificity was remarkable, allowing the resolution of analytes that could not be done by one-dimensional chromatographic systems. The sensitivity observed for different classes of prohibited substances was clearly below the value required by the World Anti-Doping Agency. In addition time-of-flight mass spectrometry gives full spectrum for all analytes without any interference from the matrix, resulting in selectivity improvements. These results could support the implementation of an exhaustive monitoring approach for hundreds of doping agents in a single injection.
Resumo:
The formalism of supersymmetric Quantum Mechanics can be extended to arbitrary dimensions. We introduce this formalism and explore its utility to solve the Schrödinger equation for a bidimensinal potential. This potential can be applied in several systems in physical and chemistry context , for instance, it can be used to study benzene molecule.
Resumo:
En del av de intressantaste fenomenen inom dagens materialfysik uppstår ur ett intrikat samspel mellan myriader av elektroner. Högtemperatursupraledare är det mest berömda exemplet. Varken klassiska teorier eller modeller där elektronerna är oberoende av varandra kan förklara de häpnadsväckande effekterna i de starkt korrelerade elektronsystemen. I vissa kopparoxider, till exempel La2CuO4, är det känt att valenselektronerna till följd av en stark ömsesidig växelverkan lokaliseras en och en till kopparatomerna i föreningens CuO2 plan. Laddningarnas inneboende magnetiska moment—spinnet—får då en avgörande roll för materialets elektriska och magnetiska egenskaper, vilka i exemplets fall kan beskrivas med Heisenbergmodellen som är den grundläggande teoretiska modellen för mikroskopisk magnetism. Men exakt varför föreningarna kan bli supraledande då de dopas med överskottsladdningar är än så länge en obesvarad fråga. Min avhandling undersöker orenheters inverkan på Heisenbergmodellens magnetiska egenskaper—ett problem av både experimentell och teoretisk relevans. En etablerad numerisk metod har använts—en kvantmekanisk Monte Carlo teknik—för att utföra omfattande datorsimuleringar av den matematiska modellen på två dedikerade Linux datorkluster. Arbetet hör till området beräkningsfysik. De teoretiska modellerna för starkt korrelerade elektronsystem, däribland Heisenbergmodellen, är ytterst invecklade matematiskt sett och de kan inte lösas exakt. Analytiska utredningar bygger för det mesta på antaganden och förenklingar vars inverkningar på slutresultatet är ofta oklara. I det avseende kan numeriska studier vara exakta, det vill säga de kan behandla modellerna som de är. Oftast behövs bägge tillvägagångssätten. Den röda tråden i arbetet har varit att numeriskt testa vissa högaktuella analytiska förutsägelser rörande effekterna av orenheter i Heisenbergmodellen. En del av dem har vi på basen av mycket noggranna data kunnat bekräfta. Men våra resultat har också påvisat felaktigheter i de analytiska prognoserna som sedermera delvis reviderats. En del av avhandlingens numeriska upptäckter har i sin tur stimulerat till helt nya teoretiska studier.
Resumo:
The measurement of cardiovascular features of wild animals is important, as is the measurement in pets, for the assessment of myocardial function and the early detection of cardiac abnormalities, which could progress to heart failure. Speckle tracking echocardiography (2D STE) is a new tool that has been used in veterinary medicine, which demonstrates several advantages, such as angle independence and the possibility to provide the early diagnosis of myocardial alterations. The aim of this study was to evaluate the left myocardial function in a maned wolf by 2D STE. Thus, the longitudinal, circumferential and radial strain and strain rate were obtained, as well as, the radial and longitudinal velocity and displacement values, from the right parasternal long axis four-chamber view, the left parasternal apical four chamber view and the parasternal short axis at the level of the papillary muscles. The results of the longitudinal variables were -13.52±7.88, -1.60±1.05, 4.34±2.52 and 3.86±3.04 for strain (%), strain rate (1/s), displacement (mm) and velocity (cm/s), respectively. In addition, the radial and circumferential Strain and Strain rate were 24.39±14.23, 1.86±0.95 and -13.69±6.53, -1.01±0.48, respectively. Thus, the present study provides the first data regarding the use of this tool in maned wolves, allowing a more complete quantification of myocardial function in this species.
Resumo:
Both atom localization and Raman cooling, considered in the thesis, reflect recent progress in the area of all-optical methods. We focus on twodimensional (2D) case, using a four-level tripod-type atomic scheme for atom localization within the optical half-wavelength as well as for efficient subrecoil Raman cooling. In the first part, we discuss the principles of 1D atom localization, accompanying by an example of the measurement of a spontaneously-emitted photon. Modifying this example, one archives sub-wavelength localization of a three-level -type atom, measuring the population in its upper state. We go further and obtain 2D sub-wavelength localization for a four-level tripod-type atom. The upper-state population is classified according to the spatial distribution, which in turn forms such structures as spikes, craters and waves. The second part of the thesis is devoted to Raman cooling. The cooling process is controlled by a sequence of velocity-selective transfers from one to another ground state. So far, 1D deep subrecoil cooling has been carried out with the sequence of square or Blackman pulses, applied to -type atoms. In turn, we discuss the transfer of atoms by stimulated Raman adiabatic passage (STIRAP), which provides robustness against the pulse duration if the cooling time is not in any critical role. A tripod-type atomic scheme is used for the purpose of 2D Raman cooling, allowing one to increase the efficiency and simplify the realization of the cooling.
Resumo:
It is well known that the numerical solutions of incompressible viscous flows are of great importance in Fluid Dynamics. The graphics output capabilities of their computational codes have revolutionized the communication of ideas to the non-specialist public. In general those codes include, in their hydrodynamic features, the visualization of flow streamlines - essentially a form of contour plot showing the line patterns of the flow - and the magnitudes and orientations of their velocity vectors. However, the standard finite element formulation to compute streamlines suffers from the disadvantage of requiring the determination of boundary integrals, leading to cumbersome implementations at the construction of the finite element code. In this article, we introduce an efficient way - via an alternative variational formulation - to determine the streamlines for fluid flows, which does not need the computation of contour integrals. In order to illustrate the good performance of the alternative formulation proposed, we capture the streamlines of three viscous models: Stokes, Navier-Stokes and Viscoelastic flows.
Resumo:
Although echocardiography has been used in rats, few studies have determined its efficacy for estimating myocardial infarct size. Our objective was to estimate the myocardial infarct size, and to evaluate anatomic and functional variables of the left ventricle. Myocardial infarction was produced in 43 female Wistar rats by ligature of the left coronary artery. Echocardiography was performed 5 weeks later to measure left ventricular diameter and transverse area (mean of 3 transverse planes), infarct size (percentage of the arc with infarct on 3 transverse planes), systolic function by the change in fractional area, and diastolic function by mitral inflow parameters. The histologic measurement of myocardial infarction size was similar to the echocardiographic method. Myocardial infarct size ranged from 4.8 to 66.6% when determined by histology and from 5 to 69.8% when determined by echocardiography, with good correlation (r = 0.88; P < 0.05; Pearson correlation coefficient). Left ventricular diameter and mean diastolic transverse area correlated with myocardial infarct size by histology (r = 0.57 and r = 0.78; P < 0.0005). The fractional area change ranged from 28.5 ± 5.6 (large-size myocardial infarction) to 53.1 ± 1.5% (control) and correlated with myocardial infarct size by echocardiography (r = -0.87; P < 0.00001) and histology (r = -0.78; P < 00001). The E/A wave ratio of mitral inflow velocity for animals with large-size myocardial infarction (5.6 ± 2.7) was significantly higher than for all others (control: 1.9 ± 0.1; small-size myocardial infarction: 1.9 ± 0.4; moderate-size myocardial infarction: 2.8 ± 2.3). There was good agreement between echocardiographic and histologic estimates of myocardial infarct size in rats.