935 resultados para Two dimensional infrared spectroscopy correlation
Resumo:
Five new chlorinated peptides (5)-(9) have been isolated from a Dysidea sp. and identified by two-dimensional NMR spectroscopy. The absolute stereochemistry of the metabolites was deduced by chemical correlation with S-(-)-4,4,4-trichloro-3-methylbutanoic acid (10) and with an alcohol (11). (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
A balanced sampling plan excluding contiguous units (or BSEC for short) was first introduced by Hedayat, Rao and Stufken in 1988. These designs can be used for survey sampling when the units are arranged in one-dimensional ordering and the contiguous units in this ordering provide similar information. In this paper, we generalize the concept of a BSEC to the two-dimensional situation and give constructions of two-dimensional BSECs with block size 3. The existence problem is completely solved in the case where lambda = 1.
Resumo:
Chen and Popova [Res. Engng Syst. Saf. 77 (2002) 61] discuss maintenance policies for items sold with a two-dimensional warranty. However, their paper fails to give a proper review of the literature and it also contains errors. In this note we first review the relevant literature and then comment on the errors in their analysis. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
For repairable items sold with free replacement warranty, the actions available to the manufacturer to rectify failures under warranty are to (1) repair the failed item or (2) replace it with a new one. A proper repair-replace strategy can reduce the expected cost of servicing the warranty. In this paper, we study repair-replace strategies for items sold with a two-dimensional free replacement warranty. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
This paper describes the modification of a two-dimensional finite element long wave hydrodynamic model in order to predict the net current and water levels attributable to the influences of waves. Tests examine the effects of the application of wave induced forces, including comparisons to a physical experiment. An example of a real river system is presented with comparisons to measured data, which demonstrate the importance of simulating the combined effects of tides and waves upon hydrodynamic behavior. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Microcrystalline silicon is a two-phase material. Its composition can be interpreted as a series of grains of crystalline silicon imbedded in an amorphous silicon tissue, with a high concentration of dangling bonds in the transition regions. In this paper, results for the transport properties of a mu c-Si:H p-i-n junction obtained by means of two-dimensional numerical simulation are reported. The role played by the boundary regions between the crystalline grains and the amorphous matrix is taken into account and these regions are treated similar to a heterojunction interface. The device is analysed under AM1.5 illumination and the paper outlines the influence of the local electric field at the grain boundary transition regions on the internal electric configuration of the device and on the transport mechanism within the mu c-Si:H intrinsic layer.
Resumo:
In-plane deformation of foams was studied experimentally by subjecting bidisperse foams to cycles of traction and compression at a prescribed rate. Each foam contained bubbles of two sizes with given area ratio and one of three initial arrangements: sorted perpendicular to the axis of deformation (iso-strain), sorted parallel to the axis of deformation (iso-stress), or randomly mixed. Image analysis was used to measure the characteristics of the foams, including the number of edges separating small from large bubbles N-sl, the perimeter (surface energy), the distribution of the number of sides of the bubbles, and the topological disorder mu(2)(N). Foams that were initially mixed were found to remain mixed after the deformation. The response of sorted foams, however, depended on the initial geometry, including the area fraction of small bubbles and the total number of bubbles. For a given experiment we found that (i) the perimeter of a sorted foam varied little; (ii) each foam tended towards a mixed state, measured through the saturation of N-sl; and (iii) the topological disorder mu(2)(N) increased up to an "equilibrium" value. The results of different experiments showed that (i) the change in disorder, Delta mu(2)(N), decreased with the area fraction of small bubbles under iso-strain, but was independent of it under iso-stress; and (ii) Delta mu(2)(N) increased with Delta N-sl under iso-strain, but was again independent of it under iso-stress. We offer explanations for these effects in terms of elementary topological processes induced by the deformations that occur at the bubble scale.
Resumo:
The interaction between two disks immersed in a 2D nernatic is investigated i) analytically using the tenser order parameter formalism for the nematic configuration around isolated disks and ii) numerically using finite-element methods with adaptive meshing to minimize the corresponding Landau-de Gennes free energy. For strong homeotropic anchoring, each disk generates a pair of defects with one-half topological charge responsible for the 2D quadrupolar interaction between the disks at large distances. At short distance, the position of the defects may change, leading to unexpected complex interactions with the quadrupolar repulsive interactions becoming attractive. This short-range attraction in all directions is still anisotropic. As the distance between the disks decreases, their preferred relative orientation with respect to the far-field nernatic director changes from oblique to perpendicular.
Resumo:
This paper is devoted to the synchronization of a dynamical system defined by two different coupling versions of two identical piecewise linear bimodal maps. We consider both local and global studies, using different tools as natural transversal Lyapunov exponent, Lyapunov functions, eigenvalues and eigenvectors and numerical simulations. We obtain theoretical results for the existence of synchronization on coupling parameter range. We characterize the synchronization manifold as an attractor and measure the synchronization speed. In one coupling version, we give a necessary and sufficient condition for the synchronization. We study the basins of synchronization and show that, depending upon the type of coupling, they can have very different shapes and are not necessarily constituted by the whole phase space; in some cases, they can be riddled.
Resumo:
This study analysed 22 strawberry and soil samples after their collection over the course of 2 years to compare the residue profiles from organic farming with integrated pest management practices in Portugal. For sample preparation, we used the citrate-buffered version of the quick, easy, cheap, effective, rugged, and safe (QuEChERS) method. We applied three different methods for analysis: (1) 27 pesticides were targeted using LC-MS/MS; (2) 143 were targeted using low pressure GC-tandem mass spectrometry (LP-GC-MS/MS); and (3) more than 600 pesticides were screened in a targeted and untargeted approach using comprehensive, two-dimensional gas chromatography time-of-flight mass spectrometry (GC × GC-TOF-MS). Comparison was made of the analyses using the different methods for the shared samples. The results were similar, thereby providing satisfactory confirmation of both similarly positive and negative findings. No pesticides were found in the organic-farmed samples. In samples from integrated pest management practices, nine pesticides were determined and confirmed to be present, ranging from 2 μg kg−1 for fluazifop-pbutyl to 50 μg kg−1 for fenpropathrin. Concentrations of residues in strawberries were less than European maximum residue limits.
Resumo:
Infrared spectroscopy, either in the near and mid (NIR/MIR) region of the spectra, has gained great acceptance in the industry for bioprocess monitoring according to Process Analytical Technology, due to its rapid, economic, high sensitivity mode of application and versatility. Due to the relevance of cyprosin (mostly for dairy industry), and as NIR and MIR spectroscopy presents specific characteristics that ultimately may complement each other, in the present work these techniques were compared to monitor and characterize by in situ and by at-line high-throughput analysis, respectively, recombinant cyprosin production by Saccharomyces cerevisiae. Partial least-square regression models, relating NIR and MIR-spectral features with biomass, cyprosin activity, specific activity, glucose, galactose, ethanol and acetate concentration were developed, all presenting, in general, high regression coefficients and low prediction errors. In the case of biomass and glucose slight better models were achieved by in situ NIR spectroscopic analysis, while for cyprosin activity and specific activity slight better models were achieved by at-line MIR spectroscopic analysis. Therefore both techniques enabled to monitor the highly dynamic cyprosin production bioprocess, promoting by this way more efficient platforms for the bioprocess optimization and control.
Resumo:
Helicobacter pylori is a bacterium recognized as the major cause of peptic ulcer and chronic gastritis. Recently, a proteome-based approach was developed to investigate pathogenic factors related to H. pylori. In this preliminary study, H. pylori strains were isolated from gastric biopsies of patients with chronic gastritis and duodenal ulcers. A partial proteomic analysis of H. pylori strains was performed by bacterial lyses and proteins were separated by two-dimensional gel electrophoresis (2-DE). A comparative analysis was performed to verify a differential protein expression between these two 2-DE maps. These data should be useful to clarify the role of different proteins related to bacterial pathogenesis. This study will be completed using a larger number of samples and protein identification of H. pylori by MALDI-TOF mass spectrometry.