834 resultados para Tuberous sclerosis
Novel TBK1 truncating mutation in a familial amyotrophic lateral sclerosis patient of Chinese origin
Resumo:
Missense and frameshift mutations in TRAF family member-associated NF-kappa-B activator (TANK)-binding kinase 1 (TBK1) have been reported in European sporadic and familial amyotrophic lateral sclerosis (ALS) cohorts. To assess the role of TBK1 in ALS patient cohorts of wider ancestry, we have analyzed whole-exome sequence data from an Australian cohort of familial ALS (FALS) patients and controls. We identified a novel TBK1 deletion (c.1197delC) in a FALS patient of Chinese origin. This frameshift mutation (p.L399fs) likely results in a truncated protein that lacks functional domains required for adapter protein binding, as well as protein activation and structural integrity. No novel or reported TBK1 mutations were identified in FALS patients of European ancestry. This is the first report of a TBK1 mutation in an ALS patient of Asian origin and indicates that sequence variations in TBK1 are a rare cause of FALS in Australia. © 2015 Elsevier Inc.
Resumo:
Multiple sclerosis (MS) is an immune-mediated demyelinating disorder of the central nervous system (CNS) affecting 0.1-0.2% of Northern European descent population. MS is considered to be a multifactorial disease, both environment and genetics play a role in its pathogenesis. Despite several decades of intense research, the etiological and pathogenic mechanisms underlying MS remain still largely unknown and no curative treatment exists. The genetic architecture underlying MS is complex with multiple genes involved. The strongest and the best characterized predisposing genetic factors for MS are located, as in other immune-mediated diseases, in the major histocompatibility complex (MHC) on chromosome 6. In humans MHC is called human leukocyte antigen (HLA). Alleles of the HLA locus have been found to associate strongly with MS and remained for many years the only consistently replicable genetic associations. However, recently other genes located outside the MHC region have been proposed as strong candidates for susceptibility to MS in several studies. In this thesis a new genetic locus located on chromosome 7q32, interferon regulatory factor 5 (IRF5), was identified in the susceptibility to MS. In particular, we found that common variation of the gene was associated with the disease in three different populations, Spanish, Swedish and Finnish. We also suggested a possible functional role for one of the risk alleles with impact on the expression of the IRF5 locus. Previous studies have pointed out a possible role played by chromosome 2q33 in the susceptibility to MS and other autoimmune disorders. The work described here also investigated the involvement of this chromosomal region in MS predisposition. After the detection of genetic association with 2q33 (article-1), we extended our analysis through fine-scale single nucleotide polymorphism (SNP) mapping to define further the contribution of this genomic area to disease pathogenesis (article-4). We found a trend (p=0.04) for association to MS with an intronic SNP located in the inducible T-cell co-stimulator (ICOS) gene, an important player in the co-stimulatory pathway of the immune system. Expression analysis of ICOS revealed a novel, previously uncharacterized, alternatively spliced isoform, lacking the extracellular domain that is needed for ligand binding. The stability of the newly-identified transcript variant and its subcellular localization were analyzed. These studies indicated that the novel isoform is stable and shows different subcellular localization as compared to full-length ICOS. The novel isoform might have a regulatory function, but further studies are required to elucidate its function. Chromosome 19q13 has been previously suggested as one of the genomic areas involved in MS predisposition. In several populations, suggestive linkage signals between MS predisposition and 19q13 have been obtained. Here, we analysed the role of allelic variation in 19q13 by family based association analysis in 782 MS families collected from Finland. In this dataset, we were not able to detect any statistically significant associations, although several previously suggested markers were included to the analysis. Replication of the previous findings on the basis of linkage disequilibrium between marker allele and disease/risk allele appears notoriously difficult because of limitations such as allelic heterogeneity. Re-sequencing based approaches may be required for elucidating the role of chromosome 19q13 with MS. This thesis has resulted in the identification of a new MS susceptibility locus (IRF5) previously associated with other inflammatory or autoimmune disorders, such as SLE. IRF5 is one of the mediators of interferons biological function. In addition to providing new insight in the possible pathogenetic pathway of the disease, this finding suggests that there might be common mechanisms between different immune-mediated disorders. Furthermore the work presented here has uncovered a novel isoform of ICOS, which may play a role in regulatory mechanisms of ICOS, an important mediator of lymphocyte activation. Further work is required to uncover its functions and possible involvement of the ICOS locus in MS susceptibility.
Resumo:
Background Multiple sclerosis (MS) is thought to be a T cell-mediated autoimmune disorder. MS pathogenesis is likely due to a genetic predisposition triggered by a variety of environmental factors. Epigenetics, particularly DNA methylation, provide a logical interface for environmental factors to influence the genome. In this study we aim to identify DNA methylation changes associated with MS in CD8+ T cells in 30 relapsing remitting MS patients and 28 healthy blood donors using Illumina 450K methylation arrays. Findings Seventy-nine differentially methylated CpGs were associated with MS. The methylation profile of CD8+ T cells was distinctive from our previously published data on CD4+ T cells in the same cohort. Most notably, there was no major CpG effect at the MS risk gene HLA-DRB1 locus in the CD8+ T cells. Conclusion CD8+ T cells and CD4+ T cells have distinct DNA methylation profiles. This case–control study highlights the importance of distinctive cell subtypes when investigating epigenetic changes in MS and other complex diseases.
Resumo:
Multiple sclerosis (MS) is a chronic relapsing-remitting inflammatory disease of the central nervous system characterized by oligodendrocyte damage, demyelination and neuronal death. Genetic association studies have shown a 2-fold or greater prevalence of the HLA-DRB1*1501 allele in the MS population compared with normal Caucasians. In discovery cohorts of Australasian patients with MS (total 2941 patients and 3008 controls), we examined the associations of 12 functional polymorphisms of P2X7, a microglial/macrophage receptor with proinflammatory effects when activated by extracellular adenosine triphosphate (ATP). In discovery cohorts, rs28360457, coding for Arg307Gln was associated with MS and combined analysis showed a 2-fold lower minor allele frequency compared with controls (1.11% for MS and 2.15% for controls, P = 0.0000071). Replication analysis of four independent European MS case–control cohorts (total 2140 cases and 2634 controls) confirmed this association [odds ratio (OR) = 0.69, P = 0.026]. A meta-analysis of all Australasian and European cohorts indicated that Arg307Gln confers a 1.8-fold protective effect on MS risk (OR = 0.57, P = 0.0000024). Fresh human monocytes heterozygous for Arg307Gln have >85% loss of ‘pore’ function of the P2X7 receptor measured by ATP-induced ethidium uptake. Analysis shows Arg307Gln always occurred with 270His suggesting a single 307Gln–270His haplotype that confers dominant negative effects on P2X7 function and protection against MS. Modeling based on the homologous zP2X4 receptor showed Arg307 is located in a region rich in basic residues located only 12 Å from the ligand binding site. Our data show the protective effect against MS of a rare genetic variant of P2RX7 with heterozygotes showing near absent proinflammatory ‘pore’ function.
Resumo:
Multiple sclerosis (MS) is the most common cause of neurological disability in young adults, affecting more than two million people worldwide. It manifests as a chronic inflammation in the central nervous system (CNS) and causes demyelination and neurodegeneration. Depending on the location of the demyelinated plaques and axonal loss, a variety of symptoms can be observed including deficits in vision, coordination, balance and movement. With a typical age of onset at 20-40 years, the social and economic impacts of MS on lives of the patients and their families are considerable. Unfortunately the current treatments are relatively inefficient and the development of more effective treatments has been impeded by our limited understanding of the causes and pathogenesis of MS. Risk of MS is higher in biological relatives of MS patients than in the general population. Twin and adoption studies have shown that familial clustering of MS is explained by shared genetic factors rather than by shared familial environment. While the involvement of the human leukocyte antigen (HLA) genes was first discovered four decades ago, additional genetic risk factors have only recently been identified through genome-wide association studies (GWAS). Current evidence suggests that MS is a highly polygenic disease with perhaps hundreds of common variants with relatively modest effects contributing to susceptibility. Despite extensive research, the majority of these risk factors still remain to be identified. In this thesis the aim was to identify novel genes and pathways involved in MS. Using genome-wide microarray technology, gene expression levels in peripheral blood mononuclear cells (PBMC) from 12 MS patients and 15 controls were profiled and more than 600 genes with altered expression in MS were identified. Three of five selected findings, DEFA1A3, LILRA4 and TNFRSF25, were successfully replicated in an independent sample. Increased expression of DEFA1A3 in MS is a particularly interesting observation, because its elevated levels have previously been reported also in several other autoimmune diseases. A systematic review of seven microarray studies was then performed leading to identification of 229 genes, in which either decreased or increased expression in MS had been reported in at least two studies. In general there was relatively little overlap across the experiments: 11 of the 229 genes had been reported in three studies and only HSPA1A in four studies. Nevertheless, these 229 genes were associated with several immunological pathways including interleukin pathways related to type 2 and type 17 helper T cells and regulatory T cells. However, whether these pathways are involved in causing MS or related to secondary processes activated after disease onset remains to be investigated. The 229 genes were also compared with loci identified in published MS GWASs. Single nucleotide polymorphisms (SNP) in 17 of the 229 loci had been reported to be associated with MS with P-value less than 0.0001 including variants in CXCR4 and SAPS2, which were the only loci where evidence for correlation between the associated variant and gene expression was found. The CXCR4 variant was further tested for association with MS in a large case-control sample and the previously reported suggestive association was replicated (P-value is 0.0004). Finally, common genetic variants in candidate genes, which had been selected on the basis of showing association with other autoimmune diseases (MYO9B) or showing differential expression in MS in our study (DEFA1A3, LILRA4 and TNFRSF25), were tested for association with MS, but no evidence of association was found. In conclusion, through a systematic review of genome-wide expression studies in MS we have identified several promising candidate genes and pathways for future studies. In addition, we have replicated a previously suggested association of a SNP variant upstream of CXCR4 with MS. Keywords: autoimmune disease, common variant, CXCR4, DEFA1A3, HSPA1A,gene expression, genetic association, GWAS, MS, multiple sclerosis, systematic review
Resumo:
Background: Glutamate excitotoxicity contributes to oligodendrocyte and tissue damage in multiple sclerosis (MS). Intriguingly, glutamate level in plasma and cerebrospinal fluid of MS patients is elevated, a feature which may be related to the pathophysiology of this disease. In addition to glutamate transporters, levels of extracellular glutamate are controlled by cystine/glutamate antiporter x(c)(-), an exchanger that provides intracellular cystine for production of glutathione, the major cellular antioxidant. The objective of this study was to analyze the role of the system x(c)(-) in glutamate homeostasis alterations in MS pathology. -- Methods: Primary cultures of human monocytes and the cell line U-937 were used to investigate the mechanism of glutamate release. Expression of cystine glutamate exchanger (xCT) was quantified by quantitative PCR, Western blot, flow cytometry and immunohistochemistry in monocytes in vitro, in animals with experimental autoimmune encephalomyelitis (EAE), the animal model of MS, and in samples of MS patients. -- Results and discussion: We show here that human activated monocytes release glutamate through cystine/glutamate antiporter x(c)(-) and that the expression of the catalytic subunit xCT is upregulated as a consequence of monocyte activation. In addition, xCT expression is also increased in EAE and in the disease proper. In the later, high expression of xCT occurs both in the central nervous system (CNS) and in peripheral blood cells. In particular, cells from monocyte-macrophage-microglia lineage have higher xCT expression in MS and in EAE, indicating that immune activation upregulates xCT levels, which may result in higher glutamate release and contribution to excitotoxic damage to oligodendrocytes. -- Conclusions: Together, these results reveal that increased expression of the cystine/glutamate antiporter system x(c)(-) in MS provides a link between inflammation and excitotoxicity in demyelinating diseases.
Resumo:
11 p.
Resumo:
CD6 has recently been identified and validated as risk gene for multiple sclerosis (MS), based on the association of a single nucleotide polymorphism (SNP), rs17824933, located in intron 1. CD6 is a cell surface scavenger receptor involved in T-cell activation and proliferation, as well as in thymocyte differentiation. In this study, we performed a haptag SNP screen of the CD6 gene locus using a total of thirteen tagging SNPs, of which three were non-synonymous SNPs, and replicated the recently reported GWAS SNP rs650258 in a Spanish-Basque collection of 814 controls and 823 cases. Validation of the six most strongly associated SNPs was performed in an independent collection of 2265 MS patients and 2600 healthy controls. We identified association of haplotypes composed of two non-synonymous SNPs [rs11230563 (R225W) and rs2074225 (A257V)] in the 2nd SRCR domain with susceptibility to MS (Pmax(T) permutation=161024). The effect of these haplotypes on CD6 surface expression and cytokine secretion was also tested. The analysis showed significantly different CD6 expression patterns in the distinct cell subsets, i.e. – CD4+ naı¨ve cells, P = 0.0001; CD8+ naı¨ve cells, P,0.0001; CD4+ and CD8+ central memory cells, P = 0.01 and 0.05, respectively; and natural killer T (NKT) cells, P = 0.02; with the protective haplotype (RA) showing higher expression of CD6. However, no significant changes were observed in natural killer (NK) cells, effector memory and terminally differentiated effector memory T cells. Our findings reveal that this new MS-associated CD6 risk haplotype significantly modifies expression of CD6 on CD4+ and CD8+ T cells.
Resumo:
Background: Human endogenous retroviruses (HERVs) are repetitive sequences derived from ancestral germ-line infections by exogenous retroviruses and different HERV families have been integrated in the genome. HERV-Fc1 in chromosome X has been previously associated with multiple sclerosis (MS) in Northern European populations. Additionally, HERV-Fc1 RNA levels of expression have been found increased in plasma of MS patients with active disease. Considering the North-South latitude gradient in MS prevalence, we aimed to evaluate the role of HERV-Fc1on MS risk in three independent Spanish cohorts. Methods: A single nucleotide polymorphism near HERV-Fc1, rs391745, was genotyped by Taqman chemistry in a total of 2473 MS patients and 3031 ethnically matched controls, consecutively recruited from: Northern (569 patients and 980 controls), Central (883 patients and 692 controls) and Southern (1021 patients and 1359 controls) Spain. Our results were pooled in a meta-analysis with previously published data. Results: Significant associations of the HERV-Fc1 polymorphism with MS were observed in two Spanish cohorts and the combined meta-analysis with previous data yielded a significant association [rs391745 C-allele carriers: p(M-H) = 0.0005; ORM-H (95% CI) = 1.27 (1.11-1.45)]. Concordantly to previous findings, when the analysis was restricted to relapsing remitting and secondary progressive MS samples, a slight enhancement in the strength of the association was observed [p(M-H) = 0.0003, ORM-H (95% CI) = 1.32 (1.14-1.53)]. Conclusion: Association of the HERV-Fc1 polymorphism rs391745 with bout-onset MS susceptibility was confirmed in Southern European cohorts.
Resumo:
Alternative splicing is a general mechanism for regulating gene expression that affects the RNA products of more than 90% of human genes. Not surprisingly, alternative splicing is observed among gene products of metazoan immune systems, which have evolved to efficiently recognize pathogens and discriminate between "self" and "non-self", and thus need to be both diverse and flexible. In this review we focus on the specific interface between alternative splicing and autoimmune diseases, which result from a malfunctioning of the immune system and are characterized by the inappropriate reaction to self-antigens. Despite the widespread recognition of alternative splicing as one of the major regulators of gene expression, the connections between alternative splicing and autoimmunity have not been apparent. We summarize recent findings connecting splicing and autoimmune disease, and attempt to find common patterns of splicing regulation that may advance our understanding of autoimmune diseases and open new avenues for therapy.
Resumo:
Epidemiological, biochemical, animal model and clinical trial data described in this overview strongly suggest that polyunsaturated fatty acids, particularly n-6 fatty acids, have a role in the pathogenesis and treatment of multiple sclerosis (MS). Data presented provides further evidence for a disturbance in n-6 fatty acid metabolism in MS. Disturbance of n-6 fatty acid metabolism and dysregulation of cytokines are shown to be linked and a "proof of concept clinical trial" further supports such a hypothesis. In a randomised double-blind, placebo controlled trial of a high dose and low dose selected GLA (18:3n-6)-rich oil and placebo control, the high dose had a marked clinical effect in relapsing-remitting MS, significantly decreasing the relapse rate and the progression of disease. Laboratory findings paralleled clinical changes in the placebo group in that production of mononuclear cell pro-inflammatory cytokines (TNF-alpha, IL-1 beta) was increased and anti-inflammatory TGF-beta markedly decreased with loss of membrane n-6 fatty acids linoleic (18:2n-6) and arachidonic acids (20:4n-6). In contrast there were no such changes in the high dose group. The improvement in disability (Expanded Disability Status Scale) in the high dose suggests there maybe a beneficial effect on neuronal lipids and neural function in MS. Thus disturbed n-6 fatty acid metabolism in MS gives rise to loss of membrane long chain n-6 fatty acids and loss of the anti-inflammatory regulatory cytokine TGF-beta, particularly during the relapse phase, as well as loss of these important neural fatty acids for CNS structure and function and consequent long term neurological deficit in MS.
Resumo:
Blood-brain barrier (BBB) hyperpermeability in multiple sclerosis (MS) is associated with lesion pathogenesis and has been linked to pathology in microvascular tight junctions (TJs). This study quantifies the uneven distribution of TJ pathology and its association with BBB leakage. Frozen sections from plaque and normal-appearing white matter (NAWM) in 14 cases were studied together with white matter from six neurological and five normal controls. Using single and double immunofluorescence and confocal microscopy, the TJ-associated protein zonula occludens-1 (ZO-1) was examined across lesion types and tissue categories, and in relation to fibrinogen leakage. Confocal image data sets were analysed for 2198 MS and 1062 control vessels. Significant differences in the incidence of TJ abnormalities were detected between the different lesion types in MS and between MS and control white matter. These were frequent in oil-red O (ORO)+ active plaques, affecting 42% of vessel segments, but less frequent in ORO- inactive plaques (23%), NAWM (13%), and normal (3.7%) and neurological controls (8%). A similar pattern was found irrespective of the vessel size, supporting a causal role for diffusible inflammatory mediators. In both NAWM and inactive lesions, dual labelling showed that vessels with the most TJ abnormality also showed most fibrinogen leakage. This was even more pronounced in active lesions, where 41% of vessels in the highest grade for TJ alteration showed severe leakage. It is concluded that disruption of TJs in MS, affecting both paracellular and transcellular paths, contributes to BBB leakage. TJ abnormality and BBB leakage in inactive lesions suggests either failure of TJ repair or a continuing pathological process. In NAWM, it suggests either pre-lesional change or secondary damage. Clinically inapparent TJ pathology has prognostic implications and should be considered when planning disease-modifying therapy
Resumo:
Blood-brain barrier (BBB) breakdown, demonstrable in vivo by enhanced MRI is characteristic of new and expanding inflammatory lesions in relapsing remitting and chronic progressive multiple sclerosis (MS). Subtle leakage may also occur in primary progressive MS. However, the anatomical route(s) of BBB leakage have not been demonstrated. We investigated the possible involvement of interendothelial tight junctions (TJ) by examining the expression of TJ proteins (occludin and ZO-1 ) in blood vessels in active MS lesions from 8 cases of MS and in normal-appearing white (NAWM) matter from 6 cases. Blood vessels (10-50 per frozen section) were scanned using confocal laser scanning microscopy to acquire datasets for analysis. TJ abnormalities manifested as beading, interruption, absence or diffuse cytoplasmic localization of fluorescence, or separation of junctions (putative opening) were frequent (affecting 40% of vessels) in oil red-O-positive active plaques but less frequent in NAWM (15%), and in normal (