987 resultados para Treasury Single Account
Resumo:
Summary Generalized Procrustes analysis and thin plate splines were employed to create an average 3D shape template of the proximal femur that was warped to the size and shape of a single 2D radiographic image of a subject. Mean absolute depth errors are comparable with previous approaches utilising multiple 2D input projections. Introduction Several approaches have been adopted to derive volumetric density (g cm-3) from a conventional 2D representation of areal bone mineral density (BMD, g cm-2). Such approaches have generally aimed at deriving an average depth across the areal projection rather than creating a formal 3D shape of the bone. Methods Generalized Procrustes analysis and thin plate splines were employed to create an average 3D shape template of the proximal femur that was subsequently warped to suit the size and shape of a single 2D radiographic image of a subject. CT scans of excised human femora, 18 and 24 scanned at pixel resolutions of 1.08 mm and 0.674 mm, respectively, were equally split into training (created 3D shape template) and test cohorts. Results The mean absolute depth errors of 3.4 mm and 1.73 mm, respectively, for the two CT pixel sizes are comparable with previous approaches based upon multiple 2D input projections. Conclusions This technique has the potential to derive volumetric density from BMD and to facilitate 3D finite element analysis for prediction of the mechanical integrity of the proximal femur. It may further be applied to other anatomical bone sites such as the distal radius and lumbar spine.
Resumo:
Harmful Algal Blooms (HABs) are a worldwide problem that have been increasing in frequency and extent over the past several decades. HABs severely damage aquatic ecosystems by destroying benthic habitat, reducing invertebrate and fish populations and affecting larger species such as dugong that rely on seagrasses for food. Few statistical models for predicting HAB occurrences have been developed, and in common with most predictive models in ecology, those that have been developed do not fully account for uncertainties in parameters and model structure. This makes management decisions based on these predictions more risky than might be supposed. We used a probit time series model and Bayesian Model Averaging (BMA) to predict occurrences of blooms of Lyngbya majuscula, a toxic cyanophyte, in Deception Bay, Queensland, Australia. We found a suite of useful predictors for HAB occurrence, with Temperature figuring prominently in models with the majority of posterior support, and a model consisting of the single covariate average monthly minimum temperature showed by far the greatest posterior support. A comparison of alternative model averaging strategies was made with one strategy using the full posterior distribution and a simpler approach that utilised the majority of the posterior distribution for predictions but with vastly fewer models. Both BMA approaches showed excellent predictive performance with little difference in their predictive capacity. Applications of BMA are still rare in ecology, particularly in management settings. This study demonstrates the power of BMA as an important management tool that is capable of high predictive performance while fully accounting for both parameter and model uncertainty.
Resumo:
Scanning Tunneling Spectroscopy was performed on a (15,0) single wall carbon nanotube partially wrapped by Poly(3-hexyl-thiophene). On the bare nanotube section, the local density of states is in good agreement with the theoretical model based on local density approximation and remarkably is not perturbed by the polymer wrapping. On the coiled section, a rectifying current-voltage characteristic has been observed along with the charge transfer from the polymer to the nanotube. The electron transfer from Poly(3-hexyl-thiophene) to metallic nanotube was previously theoretically proposed and contributes to the presence of the Schottky barrier at the interface responsible for the rectifying behavior.
Resumo:
This paper reports findings from a study investigating the effect of integrating sponsored and nonsponsored search engine links into a single web listing. The premise underlying this research is that web searchers are chiefly interested in relevant results. Given the reported negative bias that web searchers have concerning sponsored links, separate listings may be a disservice to web searchers as it might not direct them to relevant websites. Some web meta-search engines integrate sponsored and nonsponsored links into a single listing. Using a web search engine log of over 7 million interactions from hundreds of thousands of users from a major web meta-search engine, we analysed the click-through patterns for both sponsored and nonsponsored links. We also classified web queries as informational, navigational and transactional based on the expected type of content and analysed the click-through patterns of each classification. The findings show that for more than 35% of queries, there are no clicks on any result. More than 80% of web queries are informational in nature and approximately 10% are transactional, and 10% navigational. Sponsored links account for approximately 15% of all clicks. Integrating sponsored and nonsponsored links does not appear to increase the clicks on sponsored listings. We discuss how these research results could enhance future sponsored search platforms.
Resumo:
This combined PET and ERP study was designed to identify the brain regions activated in switching and divided attention between different features of a single object using matched sensory stimuli and motor response. The ERP data have previously been reported in this journal [64]. We now present the corresponding PET data. We identified partially overlapping neural networks with paradigms requiring the switching or dividing of attention between the elements of complex visual stimuli. Regions of activation were found in the prefrontal and temporal cortices and cerebellum. Each task resulted in different prefrontal cortical regions of activation lending support to the functional subspecialisation of the prefrontal and temporal cortices being based on the cognitive operations required rather than the stimuli themselves.
Resumo:
Association rule mining is one technique that is widely used when querying databases, especially those that are transactional, in order to obtain useful associations or correlations among sets of items. Much work has been done focusing on efficiency, effectiveness and redundancy. There has also been a focusing on the quality of rules from single level datasets with many interestingness measures proposed. However, with multi-level datasets now being common there is a lack of interestingness measures developed for multi-level and cross-level rules. Single level measures do not take into account the hierarchy found in a multi-level dataset. This leaves the Support-Confidence approach,which does not consider the hierarchy anyway and has other drawbacks, as one of the few measures available. In this paper we propose two approaches which measure multi-level association rules to help evaluate their interestingness. These measures of diversity and peculiarity can be used to help identify those rules from multi-level datasets that are potentially useful.
Resumo:
Relationships between self-reported retrospective falls and cognitive measures (executive function, reaction time, processing speed, working memory, visual attention) were examined in a population based sample of older adults (n = 658). Two of the choice reaction time tests involved inhibiting responses to either targets of a specific color or location with hand and foot responses. Potentially confounding demographic variables, medical conditions and postural sway were controlled for in logistic regression models, excluding participants with possible cognitive impairment. A factor analysis of cognitive measures extracted factors measuring reaction time, accuracy and inhibition, and visual search. Single fallers did not differ from non-fallers in terms of health, sway or cognitive function, except that they performed worse on accuracy and inhibition. In contrast, recurrent fallers performed worse than non-fallers on all measures. Results suggest that occasional falls in late life may be associated with subtle age-related changes in the pre-frontal cortex leading to failures of executive control, whereas recurrent falling may result from more advanced brain ageing that is associated with generalized cognitive decline.
Resumo:
As a consequence of the increased incidence of collaborative arrangements between firms, the competitive environment characterising many industries has undergone profound change. It is suggested that rivalry is not necessarily enacted by individual firms according to the traditional mechanisms of direct confrontation in factor and product markets, but rather as collaborative orchestration between a number of participants or network members. Strategic networks are recognised as sets of firms within an industry that exhibit denser strategic linkages among themselves than other firms within the same industry. Based on this, strategic networks are determined according to evidence of strategic alliances between firms comprising the industry. As a result, a single strategic network represents a group of firms closely linked according to collaborative ties. Arguably, the collective outcome of these strategic relationships engineered between firms suggest that the collaborative benefits attributed to interorganisational relationships require closer examination in respect to their propensity to influence rivalry in intraindustry environments. Derived in large from the social sciences, network theory allows for the micro and macro examination of the opportunities and constraints inherent in the structure of relationships in strategic networks, establishing a relational approach upon which the conduct and performance of firms can be more fully understood. Research to date has yet to empirically investigate the relationship between strategic networks and rivalry. The limited research that has been completed utilising a network rationale to investigate competitive patterns in contemporary industry environments has been characterised by a failure to directly measure rivalry. Further, this prior research has typically embedded investigation in industry settings dominated by technological or regulatory imperatives, such as the microprocessor and airline industries. These industries, due to the presence of such imperatives, are arguably more inclined to support the realisation of network rivalry, through subscription to prescribed technological standards (eg., microprocessor industry) or by being bound by regulatory constraints dictating operation within particular market segments (airline industry). In order to counter these weaknesses, the proposition guiding research - Are patterns of rivalry predicted by strategic network membership? – is embedded in the United States Light Vehicles Industry, an industry not dominated by technological or regulatory imperatives. Further, rivalry is directly measured and utilised in research, thus distinguishing this investigation from prior research efforts. The timeframe of investigation is 1993 – 1999, with all research data derived from secondary sources. Strategic networks were defined within the United States Light Vehicles Industry based on evidence of horizontal strategic relationships between firms comprising the industry. The measure of rivalry used to directly ascertain the competitive patterns of industry participants was derived from the traditional Herfindahl Index, modified to account for patterns of rivalry observed at the market segment level. Statistical analyses of the strategic network and rivalry constructs found little evidence to support the contention of network rivalry; indeed, greater levels of rivalry were observed between firms comprising the same strategic network than between firms participating in opposing network structures. Based on these results, patterns of rivalry evidenced in the United States Light Vehicle Industry over the period 1993 – 1999 were not found to be predicted by strategic network membership. The findings generated by this research are in contrast to current theorising in the strategic network – rivalry realm. In this respect, these findings are surprising. The relevance of industry type, in conjunction with prevailing network methodology, provides the basis upon which these findings are contemplated. Overall, this study raises some important questions in relation to the relevancy of the network rivalry rationale, establishing a fruitful avenue for further research.
Resumo:
This article rebuts the still-common assumption that managers of capitalist entities have a duty, principally or even exclusively, to maximise the monetary return to investors on their investments. It argues that this view is based on a misleadingly simplistic conception of human values and motivation. Not only is acting solely to maximise long-term shareholder value difficult, it displays, at best, banal single-mindedness and, at worst, sociopathy. In fact, real investors and managers have rich constellations of values that should be taken account of in all their decisions, including their business decisions. Awareness of our values, and public expression of our commitment to exemplify them, make for healthier investment and, in the long term, a healthier corporate world. Individuals and funds investing on the basis of such values, in companies that express their own, display humanity rather than pathology. Preamble I always enjoyed the discussions that Michael Whincop and I had about the interaction of ethics and economics. Each of us could see an important role for these disciplines, as well as our common discipline of law. We also shared an appreciation of the institutional context within which much of the drama of life is played out. In understanding the behaviour of individuals and the choices they make, it seemed axiomatic to each of us that ethics and economics have a lot to say. This was also true of the institutions in which they operate. Michael ·had a strong interest in 'the new institutional economics' I and I had a strong interest in 'institutionalising ethics' right through the 1990s.' This formed the basis of some fascinating and fruitful discussions. Professor Charles Sampford is Director, Key Centre for Ethics, Law, Justice and Governance, Foundation Professor of Law at Griffith University and President, International Institute for Public Ethics.DrVirginia Berry is a Research Fellow at theKey Centre for Ethics, Law,Justice andGovernance, Griffith University. Oliver Williamson, one of the leading proponents of the 'new institutional economics', published a number of influential works - see Williamson (1975, 1995,1996). Sampford (1991),' pp 185-222. The primary focus of discussions on institutionalising ethics has been in public sectorethics: see, for example, Preston and Sampford (2002); Sampford (1994), pp 114-38. Some discussion has, however, moved beyond the public sector to include business - see Sampford 200408299
Resumo:
This paper shows how the power quality can be improved in a microgrid that is supplying a nonlinear and unbalanced load. The microgrid contains a hybrid combination of inertial and converter interfaced distributed generation units where a decentralized power sharing algorithm is used to control its power management. One of the distributed generators in the microgrid is used as a power quality compensator for the unbalanced and harmonic load. The current reference generation for power quality improvement takes into account the active and reactive power to be supplied by the micro source which is connected to the compensator. Depending on the power requirement of the nonlinear load, the proposed control scheme can change modes of operation without any external communication interfaces. The compensator can operate in two modes depending on the entire power demand of the unbalanced nonlinear load. The proposed control scheme can even compensate system unbalance caused by the single-phase micro sources and load changes. The efficacy of the proposed power quality improvement control and method in such a microgrid is validated through extensive simulation studies using PSCAD/EMTDC software with detailed dynamic models of the micro sources and power electronic converters
Resumo:
Developing the social identity theory of leadership (e.g., [Hogg, M. A. (2001). A social identity theory of leadership. Personality and Social Psychology Review, 5, 184–200]), an experiment (N=257) tested the hypothesis that as group members identify more strongly with their group (salience) their evaluations of leadership effectiveness become more strongly influenced by the extent to which their demographic stereotype-based impressions of their leader match the norm of the group (prototypicality). Participants, with more or less traditional gender attitudes (orientation), were members, under high or low group salience conditions (salience), of non-interactive laboratory groups that had “instrumental” or “expressive” group norms (norm), and a male or female leader (leader gender). As predicted, these four variables interacted significantly to affect perceptions of leadership effectiveness. Reconfiguration of the eight conditions formed by orientation, norm and leader gender produced a single prototypicality variable. Irrespective of participant gender, prototypical leaders were considered more effective in high then low salience groups, and in high salience groups prototypical leaders were more effective than less prototypical leaders. Alternative explanations based on status characteristics and role incongruity theory do not account well for the findings. Implications of these results for the glass ceiling effect and for a wider social identity analysis of the impact of demographic group membership on leadership in small groups are discussed.
Resumo:
This paper analyzes the common factor structure of US, German, and Japanese Government bond returns. Unlike previous studies, we formally take into account the presence of country-specific factors when estimating common factors. We show that the classical approach of running a principal component analysis on a multi-country dataset of bond returns captures both local and common influences and therefore tends to pick too many factors. We conclude that US bond returns share only one common factor with German and Japanese bond returns. This single common factor is associated most notably with changes in the level of domestic term structures. We show that accounting for country-specific factors improves the performance of domestic and international hedging strategies.