978 resultados para Transverse confinement


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We estimate transverse spin single spin asymmetry(TSSA) in the process e + p(up arrow) -> J/psi + X using color evaporation model of charmonium production. We take into account transverse momentum dependent(TMD) evolution of Sivers function and parton distribution function and show that the there is a reduction in the asymmetry as compared to our earlier estimates wherein the Q(2) - evolution was implemented only through DGLAP evolution of unpolarized gluon densities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The potential of graphene oxide-Fe3O4 nanoparticle (GO-Fe3O4) composite as an image contrast enhancing material in magnetic resonance imaging has been investigated. Proton relaxivity values were obtained in three different homogeneous dispersions of GO-Fe3O4 composites synthesized by precipitating Fe3O4 nanoparticles in three different reaction mixtures containing 0.01 g, 0.1 g, and 0.2 g of graphene oxide. A noticeable difference in proton relaxivity values was observed between the three cases. A comprehensive structural and magnetic characterization revealed discrete differences in the extent of reduction of the graphene oxide and spacing between the graphene oxide sheets in the three composites. The GO-Fe3O4 composite framework that contained graphene oxide with least extent of reduction of the carboxyl groups and largest spacing between the graphene oxide sheets provided the optimum structure for yielding a very high transverse proton relaxivity value. It was found that the GO-Fe3O4 composites possessed good biocompatibility with normal cell lines, whereas they exhibited considerable toxicity towards breast cancer cells. (C) 2015 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cross-sectional stiffness matrix is derived for a pre-twisted, moderately thick beam made of transversely isotropic materials and having rectangular cross sections. An asymptotically-exact methodology is used to model the anisotropic beam from 3-D elasticity, without any further assumptions. The beam is allowed to have large displacements and rotations, but small strain is assumed. The strain energy is computed making use of the beam constitutive law and kinematical relations derived with the inclusion of geometrical nonlinearities and an initial twist. The energy functional is minimized making use of the Variational Asymptotic Method (VAM), thereby reducing the cross section to a point on the beam reference line with appropriate properties, forming a 1-D constitutive law. VAM is a mathematical technique employed in the current problem to rigorously split the 3-D analysis of beams into two: a 2-D analysis over the beam cross-sectional domain, which provides a compact semi-analytical form of the properties of the cross sections, and a nonlinear 1-D analysis of the beam reference curve. In this method, as applied herein, the cross-sectional analysis is performed asymptotically by taking advantage of a material small parameter and two geometric small parameters. 3-D strain components are derived using kinematics and arranged in orders of the small parameters. Closed-form expressions are derived for the 3-D non-linear warping and stress fields. Warping functions are obtained by the minimization of strain energy subject to certain set of constraints that render the 1-D strain measures well-defined. The zeroth-order 3-D warping field thus yielded is then used to integrate the 3-D strain energy density over the cross section, resulting in the 1-D strain energy density, which in turn helps identify the corresponding cross-sectional stiffness matrix. The model is capable of predicting interlaminar and transverse shear stresses accurately up to first order.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lightning strike to instrumented and communication towers can be a source of electromagnetic disturbance to the system connected. Long cables running on these towers can get significant induction to their sheath/core, which would then couple to the connected equipments. For a quantitative analysis of the situation, suitable theoretical analysis is necessary. Due to the dominance of the transverse magnetic mode during the fast rising portion of the stroke current, which is the period of significant induction, a full wave solution based on Maxwell's equations is necessary. Owing to the large geometric aspect ratio of tower lattice elements and for feasibility of a numerical solution, the thin-wire formulation for the electric field integral equation is generally adopted. However, the classical thin-wire formulation is not set for handling non-cylindrical conductors like tower lattice elements and the proximity of other conductors. The present work investigates further into a recently proposed method for handling such a situation and optimizes the numerical solution approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work investigates the mixed convective flow and heat transfer characteristics past a triangular cylinder placed symmetrically in a vertical channel. At a representative Reynolds number, Re = 100, simulations are carried out for the blockage ratios beta = 1/3; 1/4; and 1/6. Effect of aiding and opposing buoyancy is brought about by varying the Richardson number in the range -1.0 <= Ri <= 1.0. At a blockage ratio of 1/3, suppression of vortex shedding is found at Ri = 1, whereas von Karman vortex street is seen both at beta = 1/4 and 1/6, respectively. This is the first time that such behavior of blockage ratio past a triangular cylinder in the present flow configuration is reported. Drag coefficient increases progressively with increasing Ri and a slightly higher value is noticed at beta = 1/3. For all b, heat transfer increases with increasing Ri. Flattening of Nu(avg)-Ri curve beyond Ri > 0: 75 is observed at beta = 1/3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports the time-mean and phase-locked response of nonreacting as well as reacting flow field in a coaxial swirling jet/flame (nonpremixed). Two distinct swirl intensities plus two different central pipe flow rates at each swirl setting are investigated. The maximum response is observed at the 105 Hz mode in the range of excitation frequencies (0-315 Hz). The flow/flame exhibited minimal response beyond 300 Hz. It is seen that the aspect ratio change of inner recirculation zone (IRZ) under nonreacting conditions (at responsive modes) manifests as a corresponding increase in the time-mean flame aspect ratio. This is corroborated by similar to 25% decrease in the IRZ transverse width in both flame and cold flow states. In addition, 105 Hz excited states are found to shed high energy regions (eddies) asymmetrically when compared to dormant 315 Hz pulsing frequency. The kinetic energy (KE) of the flow field is subsequently reduced due to acoustic excitation and a corresponding increase (similar to O (1)) in fluctuation intensity is witnessed. The lower swirl intensity case is found to be more responsive than the high swirl case as in the former flow state the resistance offered by IRZ to incoming acoustic perturbations is lower due to inherently low inertia. Next, the phase-locked analysis of flow and flame structure is employed to further investigate the phase dependence of flow/flame response. It is found that the asymmetric shifting of IRZ mainly results at 270 deg acoustic forcing. The 90 deg phase angle forcing is observed to convect the IRZ farther downstream in both swirl cases as compared to other phase angles. The present work aims primarily at providing a fluid dynamic view point to the observed nonpremixed flame response without considering the confinement effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A real-space high order finite difference method is used to analyze the effect of spherical domain size on the Hartree-Fock (and density functional theory) virtual eigenstates. We show the domain size dependence of both positive and negative virtual eigenvalues of the Hartree-Fock equations for small molecules. We demonstrate that positive states behave like a particle in spherical well and show how they approach zero. For the negative eigenstates, we show that large domains are needed to get the correct eigenvalues. We compare our results to those of Gaussian basis sets and draw some conclusions for real-space, basis-sets, and plane-waves calculations. (C) 2016 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The longitudinal structure function (LSF) and the transverse structure function (TSF) in isotropic turbulence are calculated using a vortex model. The vortex model is composed of the Rankine and Burgers vortices which have the exponential distributions in the vortex Reynolds number and vortex radii. This model exhibits a power law in the inertial range and satisfies the minimal condition of isotropy that the second-order exponent of the LSF in the inertial range is equal to that of the TSF. Also observed are differences between longitudinal and transverse structure functions caused by intermittency. These differences are related to their scaling differences which have been previously observed in experiments and numerical simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MBE regrowth on patterned np-GaAs wafers has been used to fabricate GaAs/AlGaAs double barrier resonant tunnel diodes with a side-gate in the plane of the quantum well. The physical diameters vary from 1 to 20 μm. For a nominally 1 μm diameter diode the peak current is reduced by more than 95% at a side-gate voltage of -2 V at 1.5 K, which we estimate corresponds to an active tunnel region diameter of 75 nm ± 10 nm. At high gate biases additional structure appears in the conductance data. Differential I-V measurements show a linear dependence of the spacing of subsidiary peaks on gate bias indicating lateral quantum confinement. © 1996 American Institute of Physics.