854 resultados para Transmission Line Method
Resumo:
A transmission line is characterized by the fact that its parameters are distributed along its length. This fact makes the voltages and currents along the line to behave like waves and these are described by differential equations. In general, the differential equations mentioned are difficult to solve in the time domain, due to the convolution integral, but in the frequency domain these equations become simpler and their solutions are known. The transmission line can be represented by a cascade of π circuits. This model has the advantage of being developed directly in the time domain, but there is a need to apply numerical integration methods. In this work a comparison of the model that considers the fact that the parameters are distributed (Universal Line Model) and the fact that the parameters considered concentrated along the line (π circuit model) using the trapezoidal integration method, and Simpson's rule Runge-Kutta in a single-phase transmission line length of 100 km subjected to an operation power. © 2003-2012 IEEE.
Resumo:
Numerical optimization is performed of the 40-Gb/s dispersion-managed (DM) soliton transmission system with in-line synchronous intensity modulation. Stability of DM soliton transmission results from a combined action of dispersion, nonlinearity, in-line filtering, and modulation through effective periodic bandwidth management of carrier pulses. Therefore, analysis of the multiparametric problem is typically required. A two-stage time-saving numerical optimization procedure is applied. At the first step, the regions of the stable carrier propagation are determined using theoretical models available for DM solitons, and system parameters are optimized. At the second stage, full numerical simulations are undertaken in order to verify the tolerance of optimal transmission regimes. An approach developed demonstrates feasibility of error-free transmission over 20 000 km in a transmission line composed of standard fiber and dispersion compensation fiber at 40 Gb/s.
Resumo:
In the deregulated Power markets it is necessary to have a appropriate Transmission Pricing methodology that also takes into account “Congestion and Reliability”, in order to ensure an economically viable, equitable, and congestion free power transfer capability, with high reliability and security. This thesis presents results of research conducted on the development of a Decision Making Framework (DMF) of concepts and data analytic and modelling methods for the Reliability benefits Reflective Optimal “cost evaluation for the calculation of Transmission Cost” for composite power systems, using probabilistic methods. The methodology within the DMF devised and reported in this thesis, utilises a full AC Newton-Raphson load flow and a Monte-Carlo approach to determine, Reliability Indices which are then used for the proposed Meta-Analytical Probabilistic Approach (MAPA) for the evaluation and calculation of the Reliability benefit Reflective Optimal Transmission Cost (ROTC), of a transmission system. This DMF includes methods for transmission line embedded cost allocation among transmission transactions, accounting for line capacity-use as well as congestion costing that can be used for pricing using application of Power Transfer Distribution Factor (PTDF) as well as Bialek’s method to determine a methodology which consists of a series of methods and procedures as explained in detail in the thesis for the proposed MAPA for ROTC. The MAPA utilises the Bus Data, Generator Data, Line Data, Reliability Data and Customer Damage Function (CDF) Data for the evaluation of Congestion, Transmission and Reliability costing studies using proposed application of PTDF and other established/proven methods which are then compared, analysed and selected according to the area/state requirements and then integrated to develop ROTC. Case studies involving standard 7-Bus, IEEE 30-Bus and 146-Bus Indian utility test systems are conducted and reported throughout in the relevant sections of the dissertation. There are close correlation between results obtained through proposed application of PTDF method with the Bialek’s and different MW-Mile methods. The novel contributions of this research work are: firstly the application of PTDF method developed for determination of Transmission and Congestion costing, which are further compared with other proved methods. The viability of developed method is explained in the methodology, discussion and conclusion chapters. Secondly the development of comprehensive DMF which helps the decision makers to analyse and decide the selection of a costing approaches according to their requirements. As in the DMF all the costing approaches have been integrated to achieve ROTC. Thirdly the composite methodology for calculating ROTC has been formed into suits of algorithms and MATLAB programs for each part of the DMF, which are further described in the methodology section. Finally the dissertation concludes with suggestions for Future work.
Resumo:
Network reconfiguration after complete blackout of a power system is an essential step for power system restoration. A new node importance evaluation method is presented based on the concept of regret, and maximisation of the average importance of a path is employed as the objective of finding the optimal restoration path. Then, a two-stage method is presented to optimise the network reconfiguration strategy. Specifically, the restoration sequence of generating units is first optimised so as to maximise the restored generation capacity, then the optimal restoration path is selected to restore the generating nodes concerned and the issues of selecting a serial or parallel restoration mode and the reconnecting failure of a transmission line are next considered. Both the restoration path selection and skeleton-network determination are implemented together in the proposed method, which overcomes the shortcoming of separate decision-making in the existing methods. Finally, the New England 10-unit 39-bus power system and the Guangzhou power system in South China are employed to demonstrate the basic features of the proposed method.
Resumo:
This thesis advances the understanding of the impact of stigma on property values. A case study in Wellington, New Zealand, enabled hedonic modelling and an empirical analysis to determine the impact of the stigma from the high voltage transmission line structure and how long the stigma remained after removal. The results reveal a substantial difference between the discount applied to individual properties while the structure is in place, as compared to the overall increase in neighbourhood value once the structure, which created the stigma, is removed.
Resumo:
Length scale-down (LS) model tests have been traditionally employed for laboratory studies on aeolian vibration of transmission line conductors. The span adopted is normally 30 m and is recommended by the relevant Indian, as well as other, standards. The traditionally adopted length of the LS model is reexamined herein to establish the rationale behind the choice. Based on the theoretical studies discussed, certain guidelines for the choice of model span of conductor are emphasized. In addition, the adequacy of the LS span as a tool for predicting the performance of the full span is reestablished.
Resumo:
The dispersion characteristics of the dominant and higher order modes in unilateral firdines on uniaxially anisotropic substrates have been obtained. The solution has been obtained by applying the equivalent transmission-line concept in the spectral domain and by using Galerkhr’s method. Numericaf results for the propagation constant as a function of the slot-width ratio and freqnency are presented.
Resumo:
At the time of restoration transmission line switching is one of the major causes, which creates transient overvoltages. Though detailed Electro Magnetic Transient studies are carried out extensively for the planning and design of transmission systems, such studies are not common in a day-today operation of power systems. However it is important for the operator to ensure during restoration of supply that peak overvoltages resulting from the switching operations are well within safe limits. This paper presents a support vector machine approach to classify the various cases of line energization in the category of safe or unsafe based upon the peak value of overvoltage at the receiving end of line. Operator can define the threshold value of voltage to assign the data pattern in either of the class. For illustration of proposed approach the power system used for switching transient peak overvoltages tests is a 400 kV equivalent system of an Indian southern gri
Resumo:
Expressions for the phase change Φ suffered by microwaves when transmitted through an artificial dielectric composed of metallic discs arranged in a three-dimensional array have been derived with different approaches as follows (i) molecular theory, (ii) electromagnetic theory and (iii) transmission line theory. The phase change depends on the distance t that the wave traverses inside the dielectric and also the spacing d between centre to centre of any two adjacent discs in the three principal directions. Molecular theory indicates Φ as an increasing function of t, whereas, the other two theories indicate Φ as an oscillatory function of t. The transmission line theory also exhibits Φ to be real or imaginary depending on t. Experimental values of Φ as a function of t have been obtained with the help of a microwave (3·2 cms wavelength) interferometer for two dielectrics having d as 1·91 cms and 2·22 cms respectively.
Resumo:
n many parts of the world, the goal of electricity supply industries is always the introduction of competition and a lowering of the average consumer price. Because of this it has become much more important to be able to determine which generators are supplying a particular load, how much use each generator is making of a transmission line and what is generator's contribution to the system losses. In this paper a case study on generator contributions towards loads and transmission flows are illustrated with an equivalent 11-bus system, a part of Indian Southern Grid, based on the concepts of circuit flow directions, for normal and network contingency conditions.
Resumo:
Considering the method of broad-band coupling a series resonant RLC load to a resistive source using a uniform quarter-wave transmission-line inverter, it is shown that the 3-dB bandwidth of the network insertion loss reckoned with respect to a 0-dB loss attains a maximum for a particular value of the center frequency insertion loss in the range 0-3 dB. The center frequency Ioss and the corresponding value of the maximum 3-dB bandwidth are calculated for various loads and the results graphically presented.
Resumo:
A set of formulas is derived from general circuit constants which facilitates formation of the impedance matrix of a power system by the bus-impedance method. The errors associated with the lumpedparameter representation of a transmission line are thereby eliminated. The formulas are valid for short lines also, if the relevant general circuit constants are employed. The mutual impedance between the added line and the existing system is not considered, but the approach suggested can well be extended to it.
Resumo:
Computational studies of the transient stability of a synchronous machine connected to an infinite busbar by a double-circuit transmission line are used to illustrate the effect of relative phase-shift insertion between the machine and its associated power system. This method of obtaining a change in the effective rotor-excitation angle, and thereby the power transfer, is described, together with an outline of possible methods of implementation by a phase-shifting transformer in a power system.
Resumo:
This paper presents comparative evaluation of the distance relay characteristics for UHV and EHV transmission lines. Distance protection relay characteristics for the EHV and UHV systems are developed using Electromagnetic Transients (EMT) program. The variation of ideal trip boundaries for both the systems are presented. Unlike the conventional distance protection relay which uses a lumped parameter model, this paper uses the distributed parameter model. The effect of larger shunt susceptance on the trip boundaries is highlighted. Performance of distance relay with ideal trip boundaries for EHV and UHV lines have been tested for various fault locations and fault resistances. Electromagnetic Transients (EMT) program has been developed considering distributed parameter line model for simulating the test systems. The voltage and current phasors are computed from the signals using an improved full cycle DFT algorithm taking 20 samples per cycle. Two practical transmission systems of Indian power grid, namely 765 kV UHV transmission line and SREB 24-bus 400kV EHV system are used to test the performance of the proposed approach.
Resumo:
A monolithic design is proposed for low-noise sub-THz signal generation by integrating a reflector onto a dual laser source. The reflectivity and the position of such a reflector can be adjusted to obtain constructive feedback from the reflector to both lasers, thus causing a Vernier feedback effect. As a result, 10-fold line narrowing, the narrowing being limited by the resolution of the simulation, is predicted using a transmission line model. Finally, a simple control scheme using an electrical feedback loop to adjust laser biases is proposed to maintain the line narrowing performance. This line narrowing technique, comprising a passive integrated reflector, could allow the development of a low-cost, compact and energy-efficient solution for high-purity sub-THz signal generation. © The Institution of Engineering and Technology 2014.