897 resultados para Transformation-based semi-parametric estimators
Resumo:
Produtividade é frequentemente calculada pela aproximação da função de produção Cobb-Douglas. Tal estimativa, no entanto, pode sofrer de simultaneidade e viés de seleção dos insumos. Olley e Pakes (1996) introduziu um método semi-paramétrico que nos permite estimar os parâmetros da função de produção de forma consistente e, assim, obter medidas de produtividade confiável, controlando tais problemas de viés. Este estudo aplica este método em uma empresa do setor sucroalcooleiro e utiliza o comando opreg do Stata com a finalidade de estimar a função produção, descrevendo a intuição econômica por trás dos resultados.
Resumo:
The main task and one of the major mobile robotics problems is its navigation process. Conceptualy, this process means drive the robot from an initial position and orientation to a goal position and orientation, along an admissible path respecting the temporal and velocity constraints. This task must be accomplished by some subtasks like robot localization in the workspace, admissible path planning, trajectory generation and motion control. Moreover, autonomous wheeled mobile robots have kinematics constraints, also called nonholonomic constraints, that impose the robot can not move everywhere freely in its workspace, reducing the number of feasible paths between two distinct positions. This work mainly approaches the path planning and trajectory generation problems applied to wheeled mobile robots acting on a robot soccer environment. The major dificulty in this process is to find a smooth function that respects the imposed robot kinematic constraints. This work proposes a path generation strategy based on parametric polynomials of third degree for the 'x' and 'y' axis. The 'theta' orientation is derived from the 'y' and 'x' relations in such a way that the generated path respects the kinematic constraint. To execute the trajectory, this work also shows a simple control strategy acting on the robot linear and angular velocities
Resumo:
The GPS observables are subject to several errors. Among them, the systematic ones have great impact, because they degrade the accuracy of the accomplished positioning. These errors are those related, mainly, to GPS satellites orbits, multipath and atmospheric effects. Lately, a method has been suggested to mitigate these errors: the semiparametric model and the penalised least squares technique (PLS). In this method, the errors are modeled as functions varying smoothly in time. It is like to change the stochastic model, in which the errors functions are incorporated, the results obtained are similar to those in which the functional model is changed. As a result, the ambiguities and the station coordinates are estimated with better reliability and accuracy than the conventional least square method (CLS). In general, the solution requires a shorter data interval, minimizing costs. The method performance was analyzed in two experiments, using data from single frequency receivers. The first one was accomplished with a short baseline, where the main error was the multipath. In the second experiment, a baseline of 102 km was used. In this case, the predominant errors were due to the ionosphere and troposphere refraction. In the first experiment, using 5 minutes of data collection, the largest coordinates discrepancies in relation to the ground truth reached 1.6 cm and 3.3 cm in h coordinate for PLS and the CLS, respectively, in the second one, also using 5 minutes of data, the discrepancies were 27 cm in h for the PLS and 175 cm in h for the CLS. In these tests, it was also possible to verify a considerable improvement in the ambiguities resolution using the PLS in relation to the CLS, with a reduced data collection time interval. © Springer-Verlag Berlin Heidelberg 2007.
Resumo:
Includes bibliography
Resumo:
Identification and classification of overlapping nodes in networks are important topics in data mining. In this paper, a network-based (graph-based) semi-supervised learning method is proposed. It is based on competition and cooperation among walking particles in a network to uncover overlapping nodes by generating continuous-valued outputs (soft labels), corresponding to the levels of membership from the nodes to each of the communities. Moreover, the proposed method can be applied to detect overlapping data items in a data set of general form, such as a vector-based data set, once it is transformed to a network. Usually, label propagation involves risks of error amplification. In order to avoid this problem, the proposed method offers a mechanism to identify outliers among the labeled data items, and consequently prevents error propagation from such outliers. Computer simulations carried out for synthetic and real-world data sets provide a numeric quantification of the performance of the method. © 2012 Springer-Verlag.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A etiquetagem morfossintática é uma tarefa básica requerida por muitas aplicações de processamento de linguagem natural, tais como análise gramatical e tradução automática, e por aplicações de processamento de fala, por exemplo, síntese de fala. Essa tarefa consiste em etiquetar palavras em uma sentença com as suas categorias gramaticais. Apesar dessas aplicações requererem etiquetadores que demandem maior precisão, os etiquetadores do estado da arte ainda alcançam acurácia de 96 a 97%. Nesta tese, são investigados recursos de corpus e de software para o desenvolvimento de um etiquetador com acurácia superior à do estado da arte para o português brasileiro. Centrada em uma solução híbrida que combina etiquetagem probabilística com etiquetagem baseada em regras, a proposta de tese se concentra em um estudo exploratório sobre o método de etiquetagem, o tamanho, a qualidade, o conjunto de etiquetas e o gênero dos corpora de treinamento e teste, além de avaliar a desambiguização de palavras novas ou desconhecidas presentes nos textos a serem etiquetados. Quatro corpora foram usados nos experimentos: CETENFolha, Bosque CF 7.4, Mac-Morpho e Selva Científica. O modelo de etiquetagem proposto partiu do uso do método de aprendizado baseado em transformação(TBL) ao qual foram adicionadas três estratégias, combinadas em uma arquitetura que integra as saídas (textos etiquetados) de duas ferramentas de uso livre, o TreeTagger e o -TBL, com os módulos adicionados ao modelo. No modelo de etiquetador treinado com o corpus Mac-Morpho, de gênero jornalístico, foram obtidas taxas de acurácia de 98,05% na etiquetagem de textos do Mac-Morpho e 98,27% em textos do Bosque CF 7.4, ambos de gênero jornalístico. Avaliou-se também o desempenho do modelo de etiquetador híbrido proposto na etiquetagem de textos do corpus Selva Científica, de gênero científico. Foram identificadas necessidades de ajustes no etiquetador e nos corpora e, como resultado, foram alcançadas taxas de acurácia de 98,07% no Selva Científica, 98,06% no conjunto de teste do Mac-Morpho e 98,30% em textos do Bosque CF 7.4. Esses resultados são significativos, pois as taxas de acurácia alcançadas são superiores às do estado da arte, validando o modelo proposto em busca de um etiquetador morfossintático mais confiável.
Resumo:
Neste trabalho, são apresentados a metodologia de projeto e resultados de testes experimentais de um estabilizador de sistema de potência (ESP), implementado em um sistema de geração em escala reduzida de 10 kVA, localizado no Laboratório de Controle e Sistema de Potência (LACSPOT) da Universidade Federal do Pará (UFPA). O projeto do ESP é baseado em uma estratégia de controle robusto com ênfase em incertezas paramétricas estruturadas, as quais são tratadas com ferramentas da teoria de análise intervalar. Estas incertezas são decorrentes de mudanças do ponto de operação do sistema, que provocam variações nos parâmetros de um modelo matemático linearizado referente ao comportamento dinâmico do sistema elétrico de potência no referido ponto de operação. Para o projeto do ESP robusto intervalar, são realizados uma serie de ensaios experimentais com o propósito de estimar os parâmetros de modelos linearizados da planta, representando satisfatoriamente a dinâmica dos modos poucos amortecidos do sistema de geração interligado. O método de identificação é baseado em técnica de identificação paramétrica, baseado em mínimos quadrados. A partir de um conjunto de dados de entrada e saída, para cada ponto de operação, um modelo linear, do tipo auto-regressivo com entrada exógenos (ARX), estimado para fim de uso do projeto do ESP. Por fim, uma série de testes experimentais é realizada no sistema de geração interligado a rede elétrica local, com o propósito de verificar a efetividade da técnica de controle robusto intervalar proposta para a sintonia do ESP. A partir da análise da função custo do sinal de erro de desvio de potência elétrica na saída do gerador síncrono e a função custo do sinal de controle do ESP comprova-se experimentalmente o bom desempenho obtido pela técnica de controle proposta em comparação com uma técnica de controle clássica.
Resumo:
[EN]We present advances of the meccano method [1,2] for tetrahedral mesh generation and volumetric parameterization of solids. The method combines several former procedures: a mapping from the meccano boundary to the solid surface, a 3-D local refinement algorithm and a simultaneous mesh untangling and smoothing. The key of the method lies in defining a one-to-one volumetric transformation between the parametric and physical domains. Results with adaptive finite elements will be shown for several engineering problems. In addition, the application of the method to T-spline modelling and isogeometric analysis [3,4] of complex geometries will be introduced…
Resumo:
In the first chapter we develop a theoretical model investigating food consumption and body weight with a novel assumption regarding human caloric expenditure (i.e. metabolism), in order to investigate why individuals can be rationally trapped in an excessive weight equilibrium and why they struggle to lose weight even when offered incentives for weight-loss. This assumption allows the theoretical model to have multiple equilibria and to provide an explanation for why losing weight is so difficult even in the presence of incentives, without relying on rational addiction, time-inconsistency preferences or bounded rationality. In addition to this result we are able to characterize under which circumstances a temporary incentive can create a persistent weight loss. In the second chapter we investigate the possible contributions that social norms and peer effects had on the spread of obesity. In recent literature peer effects and social norms have been characterized as important pathways for the biological and behavioral spread of body weight, along with decreased food prices and physical activity. We add to this literature by proposing a novel concept of social norm related to what we define as social distortion in weight perception. The theoretical model shows that, in equilibrium, the effect of an increase in peers' weight on i's weight is unrelated to health concerns while it is mainly associated with social concerns. Using regional data from England we prove that such social component is significant in influencing individual weight. In the last chapter we investigate the relationship between body weight and employment probability. Using a semi-parametric regression we show that men and women employment probability do not follow a linear relationship with body mass index (BMI) but rather an inverted U-shaped one, peaking at a BMI way over the clinical threshold for overweight.
Resumo:
In this paper, we develop Bayesian hierarchical distributed lag models for estimating associations between daily variations in summer ozone levels and daily variations in cardiovascular and respiratory (CVDRESP) mortality counts for 19 U.S. large cities included in the National Morbidity Mortality Air Pollution Study (NMMAPS) for the period 1987 - 1994. At the first stage, we define a semi-parametric distributed lag Poisson regression model to estimate city-specific relative rates of CVDRESP associated with short-term exposure to summer ozone. At the second stage, we specify a class of distributions for the true city-specific relative rates to estimate an overall effect by taking into account the variability within and across cities. We perform the calculations with respect to several random effects distributions (normal, t-student, and mixture of normal), thus relaxing the common assumption of a two-stage normal-normal hierarchical model. We assess the sensitivity of the results to: 1) lag structure for ozone exposure; 2) degree of adjustment for long-term trends; 3) inclusion of other pollutants in the model;4) heat waves; 5) random effects distributions; and 6) prior hyperparameters. On average across cities, we found that a 10ppb increase in summer ozone level for every day in the previous week is associated with 1.25 percent increase in CVDRESP mortality (95% posterior regions: 0.47, 2.03). The relative rate estimates are also positive and statistically significant at lags 0, 1, and 2. We found that associations between summer ozone and CVDRESP mortality are sensitive to the confounding adjustment for PM_10, but are robust to: 1) the adjustment for long-term trends, other gaseous pollutants (NO_2, SO_2, and CO); 2) the distributional assumptions at the second stage of the hierarchical model; and 3) the prior distributions on all unknown parameters. Bayesian hierarchical distributed lag models and their application to the NMMAPS data allow us estimation of an acute health effect associated with exposure to ambient air pollution in the last few days on average across several locations. The application of these methods and the systematic assessment of the sensitivity of findings to model assumptions provide important epidemiological evidence for future air quality regulations.
Resumo:
Time series models relating short-term changes in air pollution levels to daily mortality counts typically assume that the effects of air pollution on the log relative rate of mortality do not vary with time. However, these short-term effects might plausibly vary by season. Changes in the sources of air pollution and meteorology can result in changes in characteristics of the air pollution mixture across seasons. The authors develop Bayesian semi-parametric hierarchical models for estimating time-varying effects of pollution on mortality in multi-site time series studies. The methods are applied to the updated National Morbidity and Mortality Air Pollution Study database for the period 1987--2000, which includes data for 100 U.S. cities. At the national level, a 10 micro-gram/m3 increase in PM(10) at lag 1 is associated with a 0.15 (95% posterior interval: -0.08, 0.39),0.14 (-0.14, 0.42), 0.36 (0.11, 0.61), and 0.14 (-0.06, 0.34) percent increase in mortality for winter, spring, summer, and fall, respectively. An analysis by geographical regions finds a strong seasonal pattern in the northeast (with a peak in summer) and little seasonal variation in the southern regions of the country. These results provide useful information for understanding particle toxicity and guiding future analyses of particle constituent data.