911 resultados para Traffic Pattern Analysis


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Educação para a Ciência - FC

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hancornia speciosa Gomes is a fruit tree native from Brazil that belongs to Apocinaceae family, and is popularly known as Mangabeira. Its fruits are widely consumed raw or processed as fruit jam, juices and ice creams, which have made it a target of intense exploitation. The extractive activities and intense human activity on the environment of natural occurrence of H. speciosa has caused genetic erosion in the species and little is known about the ecology or genetic structure of natural populations. The objective of this research was the evaluation of the genetic diversity and genetic structure of H. speciosa var. speciosa. The genetic variability was assessed using 11 allozyme loci with a sample of 164 individuals distributed in six natural populations located in the States of Pernambuco and Alagoas, Northeastern Brazil. The results showed a high level of genetic diversity within the species (e= 0.36) seeing that the most of the genetic variability of H. speciosa var. speciosa is within its natural populations with low difference among populations ( or = 0.081). The inbreeding values within ( = -0.555) and among populations ( =-0.428) were low showing lacking of endogamy and a surplus of heterozygotes. The estimated gene flow ( m ) was high, ranging from 2.20 to 13.18, indicating to be enough to prevent the effects of genetic drift and genetic differentiation among populations. The multivariate analyses indicated that there is a relationship between genetic and geographical distances, which was confirmed by a spatial pattern analysis using Mantel test (r = 0.3598; p = 0.0920) with 1000 random permutations. The high genetic diversity index in these populations indicates potential for in situ genetic conservation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Attempts to strengthen a chromium-modified titanium trialuminide by a combination of grain size refinement and dispersoid strengthening led to a new means to synthesize such materials. This Reactive Mechanical Alloying/Milling process uses in situ reactions between the metallic powders and elements from a process control agent and/or a gaseous environment to assemble a dispersed small hard particle phase within the matrix by a bottom-up approach. In the current research milled powders of the trialuminide alloy along with titanium carbide were produced. The amount of the carbide can be varied widely with simple processing changes and in this case the milling process created trialuminide grain sizes and carbide particles that are the smallest known from such a process. Characterization of these materials required the development of x-ray diffraction means to determine particle sizes by deconvoluting and synthesizing components of the complex multiphase diffraction patterns and to carry out whole pattern analysis to analyze the diffuse scattering that developed from larger than usual highly defective grain boundary regions. These identified regions provide an important mass transport capability in the processing and not only facilitate the alloy development, but add to the understanding of the mechanical alloying process. Consolidation of the milled powder that consisted of small crystallites of the alloy and dispersed carbide particles two nanometers in size formed a unique, somewhat coarsened, microstructure producing an ultra-high strength solid material composed of the chromium-modified titanium trialuminide alloy matrix with small platelets of the complex carbides Ti2AlC and Ti3AlC2. This synthesis process provides the unique ability to nano-engineer a wide variety of composite materials, or special alloys, and has shown the ability to be extended to a wide variety of metallic materials.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Various applications for the purposes of event detection, localization, and monitoring can benefit from the use of wireless sensor networks (WSNs). Wireless sensor networks are generally easy to deploy, with flexible topology and can support diversity of tasks thanks to the large variety of sensors that can be attached to the wireless sensor nodes. To guarantee the efficient operation of such a heterogeneous wireless sensor networks during its lifetime an appropriate management is necessary. Typically, there are three management tasks, namely monitoring, (re) configuration, and code updating. On the one hand, status information, such as battery state and node connectivity, of both the wireless sensor network and the sensor nodes has to be monitored. And on the other hand, sensor nodes have to be (re)configured, e.g., setting the sensing interval. Most importantly, new applications have to be deployed as well as bug fixes have to be applied during the network lifetime. All management tasks have to be performed in a reliable, time- and energy-efficient manner. The ability to disseminate data from one sender to multiple receivers in a reliable, time- and energy-efficient manner is critical for the execution of the management tasks, especially for code updating. Using multicast communication in wireless sensor networks is an efficient way to handle such traffic pattern. Due to the nature of code updates a multicast protocol has to support bulky traffic and endto-end reliability. Further, the limited resources of wireless sensor nodes demand an energy-efficient operation of the multicast protocol. Current data dissemination schemes do not fulfil all of the above requirements. In order to close the gap, we designed the Sensor Node Overlay Multicast (SNOMC) protocol such that to support a reliable, time-efficient and energy-efficient dissemination of data from one sender node to multiple receivers. In contrast to other multicast transport protocols, which do not support reliability mechanisms, SNOMC supports end-to-end reliability using a NACK-based reliability mechanism. The mechanism is simple and easy to implement and can significantly reduce the number of transmissions. It is complemented by a data acknowledgement after successful reception of all data fragments by the receiver nodes. In SNOMC three different caching strategies are integrated for an efficient handling of necessary retransmissions, namely, caching on each intermediate node, caching on branching nodes, or caching only on the sender node. Moreover, an option was included to pro-actively request missing fragments. SNOMC was evaluated both in the OMNeT++ simulator and in our in-house real-world testbed and compared to a number of common data dissemination protocols, such as Flooding, MPR, TinyCubus, PSFQ, and both UDP and TCP. The results showed that SNOMC outperforms the selected protocols in terms of transmission time, number of transmitted packets, and energy-consumption. Moreover, we showed that SNOMC performs well with different underlying MAC protocols, which support different levels of reliability and energy-efficiency. Thus, SNOMC can offer a robust, high-performing solution for the efficient distribution of code updates and management information in a wireless sensor network. To address the three management tasks, in this thesis we developed the Management Architecture for Wireless Sensor Networks (MARWIS). MARWIS is specifically designed for the management of heterogeneous wireless sensor networks. A distinguished feature of its design is the use of wireless mesh nodes as backbone, which enables diverse communication platforms and offloading functionality from the sensor nodes to the mesh nodes. This hierarchical architecture allows for efficient operation of the management tasks, due to the organisation of the sensor nodes into small sub-networks each managed by a mesh node. Furthermore, we developed a intuitive -based graphical user interface, which allows non-expert users to easily perform management tasks in the network. In contrast to other management frameworks, such as Mate, MANNA, TinyCubus, or code dissemination protocols, such as Impala, Trickle, and Deluge, MARWIS offers an integrated solution monitoring, configuration and code updating of sensor nodes. Integration of SNOMC into MARWIS further increases performance efficiency of the management tasks. To our knowledge, our approach is the first one, which offers a combination of a management architecture with an efficient overlay multicast transport protocol. This combination of SNOMC and MARWIS supports reliably, time- and energy-efficient operation of a heterogeneous wireless sensor network.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We provide a novel search technique which uses a hierarchical model and a mutual information gain heuristic to efficiently prune the search space when localizing faces in images. We show exponential gains in computation over traditional sliding window approaches, while keeping similar performance levels.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Methods for tracking an object have generally fallen into two groups: tracking by detection and tracking through local optimization. The advantage of detection-based tracking is its ability to deal with target appearance and disappearance, but it does not naturally take advantage of target motion continuity during detection. The advantage of local optimization is efficiency and accuracy, but it requires additional algorithms to initialize tracking when the target is lost. To bridge these two approaches, we propose a framework for unified detection and tracking as a time-series Bayesian estimation problem. The basis of our approach is to treat both detection and tracking as a sequential entropy minimization problem, where the goal is to determine the parameters describing a target in each frame. To do this we integrate the Active Testing (AT) paradigm with Bayesian filtering, and this results in a framework capable of both detecting and tracking robustly in situations where the target object enters and leaves the field of view regularly. We demonstrate our approach on a retinal tool tracking problem and show through extensive experiments that our method provides an efficient and robust tracking solution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We propose a new Bayesian framework for automatically determining the position (location and orientation) of an uncalibrated camera using the observations of moving objects and a schematic map of the passable areas of the environment. Our approach takes advantage of static and dynamic information on the scene structures through prior probability distributions for object dynamics. The proposed approach restricts plausible positions where the sensor can be located while taking into account the inherent ambiguity of the given setting. The proposed framework samples from the posterior probability distribution for the camera position via data driven MCMC, guided by an initial geometric analysis that restricts the search space. A Kullback-Leibler divergence analysis is then used that yields the final camera position estimate, while explicitly isolating ambiguous settings. The proposed approach is evaluated in synthetic and real environments, showing its satisfactory performance in both ambiguous and unambiguous settings.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purely data-driven approaches for machine learning present difficulties when data are scarce relative to the complexity of the model or when the model is forced to extrapolate. On the other hand, purely mechanistic approaches need to identify and specify all the interactions in the problem at hand (which may not be feasible) and still leave the issue of how to parameterize the system. In this paper, we present a hybrid approach using Gaussian processes and differential equations to combine data-driven modeling with a physical model of the system. We show how different, physically inspired, kernel functions can be developed through sensible, simple, mechanistic assumptions about the underlying system. The versatility of our approach is illustrated with three case studies from motion capture, computational biology, and geostatistics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We assessed whether the relative importance of positive and negative interactions in early successional communities varied across a large landslide on Casita Volcano (Nicaragua). We tested several hypotheses concerning the signatures of these processes in the spatial patterns of woody pioneer plants, as well as those of mortality and recruitment events, in several zones of the landslide differing in substrate stability and fertility, over a period of two years (2001 and 2002). We identified all woody individuals with a diameter >1 cm and mapped them in 28 plots measuring 10 × 10-m. On these maps, we performed a spatial point pattern analysis using univariate and bivariate pair-correlation functions; g (r) and g12 (r), and pairwise differences of univariate and bivariate functions. Spatial signatures of positive and negative interactions among woody plants were more prevalent in the most and least stressful zones of the landslide, respectively. Natural and human-induced disturbances such as the occurrence of fire, removal of newly colonizing plants through erosion and clearcutting of pioneer trees were also identified as potentially important pattern-creating processes. These results are in agreement with the stress-gradient hypothesis, which states that the relative importance of facilitation and competition varies inversely across gradients of abiotic stress. Our findings also indicate that the assembly of early successional plant communities in large heterogeneous landslides might be driven by a much larger array of processes than previously thought.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Two-phase plant communities with an engineer conforming conspicuous patches and affecting the performance and patterns of coexisting species are the norm under stressful conditions. To unveil the mechanisms governing coexistence in these communities at multiple spatial scales, we have developed a new point-raster approach of spatial pattern analysis, which was applied to a Mediterranean high mountain grassland to show how Festuca curvifolia patches affect the local distribution of coexisting species. We recorded 22 111 individuals of 17 plant perennial species. Most coexisting species were negatively associated with F. curvifolia clumps. Nevertheless, bivariate nearest-neighbor analyses revealed that the majority of coexisting species were confined at relatively short distances from F. curvifolia borders (between 0-2 cm and up to 8 cm in some cases). Our study suggests the existence of a fine-scale effect of F. curvifolia for most species promoting coexistence through a mechanism we call 'facilitation in the halo'. Most coexisting species are displaced to an interphase area between patches, where two opposite forces reach equilibrium: attenuated severe conditions by proximity to the F. curvifolia canopy (nutrient-rich islands) and competitive exclusion mitigated by avoiding direct contact with F. curvifolia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Although tree ferns are an important component of temperate and tropical forests, very little is known about their ecology. Their peculiar biology (e.g., dispersal by spores and two-phase life cycle) makes it difficult to extrapolate current knowledge on the ecology of other tree species to tree ferns. In this paper, we studied the effects of negative density dependence (NDD) and environmental heterogeneity on populations of two abundant tree fern species, Cyathea caracasana and Alsophila engelii, and how these effects change across a successional gradient. Species patterns harbor information on processes such as competition that can be easily revealed using point pattern analysis techniques. However, its detection may be difficult due to the confounded effects of habitat heterogeneity. Here, we mapped three forest plots along a successional gradient in the montane forests of Southern Ecuador. We employed homogeneous and inhomogeneous K and pair correlation functions to quantify the change in the spatial pattern of different size classes and a case-control design to study associations between juvenile and adult tree ferns. Using spatial estimates of the biomass of four functional tree types (short- and long-lived pioneer, shade- and partial shade-tolerant) as covariates, we fitted heterogeneous Poisson models to the point pattern of juvenile and adult tree ferns and explored the existence of habitat dependencies on these patterns. Our study revealed NDD effects for C. caracasana and strong environmental filtering underlying the pattern of A. engelii. We found that adult and juvenile populations of both species responded differently to habitat heterogeneity and in most cases this heterogeneity was associated with the spatial distribution of biomass of the four functional tree types. These findings show the effectiveness of factoring out environmental heterogeneity to avoid confounding factors when studying NDD and demonstrate the usefulness of covariate maps derived from mapped communities.