930 resultados para Tracheal Tube
Effect of regenerator material compositions on the performances of a two-stage pulse tube cryocooler
Resumo:
This paper reports single pulse shock tube and ab initio studies on thermal decomposition of 2-fluoro and 2-chloroethanol at T=1000–1200 K. Both molecules have HX (X = F/Cl) and H2O molecular elimination channels. The CH3CHO formed by HX elimination is chemically active and undergoes secondary decomposition resulting in the formation of CH4, C2H6, and C2H4. A detailed kinetic simulation indicates that the formation of C2H4 could not be quantitatively explained as arising exclusively from secondary CH3CHO decomposition. Contributions from primary radical processes need to be considered to explain C2H4 quantitatively. Ab initio calculations on HX and H2O elimination reactions from the haloethanols at HF, MP2, and DFT levels with various basis sets up to 6/311++G**are reported. It is pointed out that due to strong correlations between A and Eα, comparison of these two parameters between experimental and theoretical results could be misleading.
Resumo:
The flux tube model offers a pictorial description of what happens during the deconfinement phase transition in QCD. The three-point vertices of a flux tube network lead to formation of baryons upon hadronization. Therefore, correlations in the baryon number distribution at the last scattering surface are related to the preceding pattern of the flux tube vertices in the quark-gluon plasma, and provide a signature of the nearby deconfinement phase transition. I discuss the nature of the expected signal, and how to extract it from the experimental data for heavy ion collisions at RHIC and LHC.
Resumo:
Thermo Acoustic Prime Movers (TAPMs) are being considered as the ideal choice for driving the Pulse Tube Cryocoolers replacing the conventional compressors. The advantages are the absence of moving components and they can be driven by low grade energy as such as fuel, gas, solar energy, waste heat etc. While the development of such TAPMs is in progress in our laboratory, their design and fabrication should be guided by numerical modeling and this may be done by several methods such as solving the energy equation 1], enthalpy flow model 2], CFD 3], etc. We have used CFD technique, since it provides a better insight into the velocity and temperature profiles. The analysis is carried out by varying parameters such as (a) temperature difference across the stack, (b) stack and resonator lengths and (c) different working fluids such as air, nitrogen, argon etc. The theoretical results are compared with the experimental data wherever possible and they are in reasonably good agreement with each other. The analysis indicate that (i) larger temperature difference across the stack leads to increased acoustic amplitude, (ii) longer resonator leads to decrease in frequency with lesser amplitude and (iii) there exists an optimal stack length for the best performance of TAPM. These results are presented here.
Resumo:
This paper describes the design, fabrication and testing of a moving magnet type linear motor of dual piston configuration for a pulse tube cryocooler for ground applications. Eight radially magnetized segmented magnets were used to form one set of a magnet ring. Four magnet rings of such type were constructed, in which one pair of rings has north-pole on its outer diameter and south-pole on inner diameter, while the other pair is it's complementary. The magnets were mounted with opposite poles together on the magnet holder with an axial moving shaft having a piston mounted on both ends of the shaft. The shaft movement was restricted to the axial direction by using C-clamp type flexures, mounted on both sides of the shaft. The force requirement for driving the compressor was calculated based on which the electrical circuit of motor is designed by proper selection of wire gauge and Ampere-turns. The flexure spring force estimation was done through simulation using ANSYS 11.0 and was verified experimentally; while the magnet spring force was determined experimentally. The motor with mounted piston was tested using a variable voltage and variable frequency power supply capable of driving 140 watts of load.
Resumo:
Single and two-stage Pulse Tube Cryocoolers (PTC) have been designed, fabricated and experimentally studied. The single stage PTC reaches a no-load temperature of similar to 29 K at its cold end, the two-stage PTC reaches similar to 2.9 K in its second stage cold end and similar to 60 K in its first stage cold end. The two-stage Pulse Tube Cryocooler provides a cooling power of similar to 250 mW at 4.2 K. The single stage system uses stainless steel meshes along with Pb granules as its regenerator materials, while the two-stage PTC uses combinations of Pb along with Er3Ni/HoCu2 as the second stage regenerator materials. Normally, the above systems are insulated by thermal radiation shields and mounted inside a vacuum chamber which is maintained at high vacuum. To evaluate the performance of these systems in the possible conditions of loss of vacuum with and without radiation shields, experimental studies have been performed. The heat-in-leak under such severe conditions has been estimated from the heat load characteristics of the respective stages. The experimental results are analyzed to obtain surface emissivities and effective thermal conductivities as a function of interspace pressure.
Resumo:
More than 70 molecules of varied nature have been identified in the envelopes of carbon-rich stars through their spectral fingerprints in the microwave or far infrared regions. Many of them are carbon chain molecules and radicals, and a significant number are unique to the circumstellar medium. The determination of relevant laboratory kinetics data is critical to keep up with the development of the high spectral and spatial resolution observations and of the refinement of chemical models. Neutralneutral reactions of the CN radical with unsaturated hydrocarbons could be a dominant route in the formation of cyanopolyynes, even at low temperatures and deserve a detailed laboratory investigation. The approach we have developed aims to bridge the temperature gap between resistively heated flow tubes and shock tubes. The present kinetic measurements are obtained using a new reactor combining a high-enthalpy source with a flow tube and a pulsed laser photolysislaser-induced fluorescence system to probe the undergoing chemical reactions. The high-enthalpy flow tube has been used to measure the rate constant of the reaction of the CN radical with propane (C3H8), propene (C3H6), allene (C3H4), 1,3-butadiene (1,3-C4H6), and 1-butyne (C4H6) over a temperature range extending from 300 to 1200 K. All studied reactions of CN with unsaturated hydrocarbons are rapid, with rate coefficients greater than 10-10 cm3 center dot molecule-1 center dot s-1 and exhibit slight negative temperature dependence above room temperature. (c) 2012 Wiley Periodicals, Inc. Int J Chem Kinet 44: 753766, 2012
Resumo:
The use of high-velocity sheet-forming techniques where the strain rates are in excess of 10(2)/s can help us solve many problems that are difficult to overcome with traditional metal-forming techniques. In this investigation, thin metallic plates/foils were subjected to shock wave loading in the newly developed diaphragmless shock tube. The conventional shock tube used in the aerodynamic applications uses a metal diaphragm for generating shock waves. This method of operation has its own disadvantages including the problems associated with repeatable and reliable generation of shock waves. Moreover, in industrial scenario, changing metal diaphragms after every shot is not desirable. Hence, a diaphragmless shock tube is calibrated and used in this study. Shock Mach numbers up to 3 can be generated with a high degree of repeatability (+/- 4 per cent) for the pressure jumps across the primary shock wave. The shock Mach number scatter is within +/- 1.5 per cent. Copper, brass, and aluminium plates of diameter 60 mm and thickness varying from 0.1 to 1 mm are used. The plate peak over-pressures ranging from 1 to 10 bar are used. The midpoint deflection, circumferential, radial, and thickness strains are measured and using these, the Von Mises strain is also calculated. The experimental results are compared with the numerical values obtained using finite element analysis. The experimental results match well with the numerical values. The plastic hinge effect was also observed in the finite element simulations. Analysis of the failed specimens shows that aluminium plates had mode I failure, whereas copper plates had mode II failure.
Resumo:
Low-frequency sounds are advantageous for long-range acoustic signal transmission, but for small animals they constitute a challenge for signal detection and localization. The efficient detection of sound in insects is enhanced by mechanical resonance either in the tracheal or tympanal system before subsequent neuronal amplification. Making small structures resonant at low sound frequencies poses challenges for insects and has not been adequately studied. Similarly, detecting the direction of long-wavelength sound using interaural signal amplitude and/or phase differences is difficult for small animals. Pseudophylline bushcrickets predominantly call at high, often ultrasonic frequencies, but a few paleotropical species use lower frequencies. We investigated the mechanical frequency tuning of the tympana of one such species, Onomarchus uninotatus, a large bushcricket that produces a narrow bandwidth call at an unusually low carrier frequency of 3.2. kHz. Onomarchus uninotatus, like most bushcrickets, has two large tympanal membranes on each fore-tibia. We found that both these membranes vibrate like hinged flaps anchored at the dorsal wall and do not show higher modes of vibration in the frequency range investigated (1.5-20. kHz). The anterior tympanal membrane acts as a low-pass filter, attenuating sounds at frequencies above 3.5. kHz, in contrast to the high-pass filter characteristic of other bushcricket tympana. Responses to higher frequencies are partitioned to the posterior tympanal membrane, which shows maximal sensitivity at several broad frequency ranges, peaking at 3.1, 7.4 and 14.4. kHz. This partitioning between the two tympanal membranes constitutes an unusual feature of peripheral auditory processing in insects. The complex tracheal shape of O. uninotatus also deviates from the known tube or horn shapes associated with simple band-pass or high-pass amplification of tracheal input to the tympana. Interestingly, while the anterior tympanal membrane shows directional sensitivity at conspecific call frequencies, the posterior tympanal membrane is not directional at conspecific frequencies and instead shows directionality at higher frequencies.
Resumo:
A simple hand-operated shock tube capable of producing Mach 2 shock waves is described. Performance of this miniature shock tube using compressed high pressure air created by a manually operated piston in the driver section of the shock tube as driver gas with air at 1 atm pressure as the test gas in the driven tube is presented. The performance of the shock tube is found to match well with the theoretically estimated values using normal shock relations. Applications of this shock tube named Reddy tube, include study of blast-induced traumatic brain injuries and high temperature chemical kinetics.