975 resultados para Trace-elements
Resumo:
Fifty m of basement rocks underlying 185 m of Neogene and Mesozoic sediments were drilled seaward of the Mazagan Slope about 100 km west of Casablanca during Leg 79. These rocks are metagranites with mylonitic textures consisting dominantly of quartz, plagioclase, and potassium feldspar. Chemically, they are strongly peraluminous. This along with the absence of hornblende suggest that these rocks are similar to the S-type granites. Petrographic and chemical data suggest the possible existence of a former weathering surface on top of the Mazagan metagranite.
Resumo:
Four chemically distinct basalts were cored in 44 m of basement penetration at Deep Sea Drilling Project Site 543, in Upper Cretaceous crust just seaward of the deformation front of the Barbados Ridge and north of the Tiburon Rise. All four types are moderately fractionated abyssal tholeiites. The four types have different magnetic inclinations, all of reversed polarity, suggesting eruption at different times which recorded secular variation of the earth's magnetic field. Extensive replacement of Plagioclase by K-feldspar has occurred at the top of the basalts, giving analyses with K2O contents up to 5 %. The earliest stages of alteration were dominantly oxidative, resulting in fractures lined with celadonite and dioctahedral smectite, and pervasive replacement of olivine and most intersertal glass with iron hydroxides and green clay minerals. Latef, non-oxidative alteration resulted in formation of olive-green clays and pyrite veins in a portion of the rocks. Basalts affected by this alteration actually lost K2O (to abundances lower than in adjacent fresh basalt glasses), and gained MgO (to abundances higher than in the glasses). Finally, fractures and interpillow voids were lined with calcite, sealing in much fresh glass. Oxygen-isotope measurements on the calcite indicate that this occurred at 12 to 25C. Either altering fluids were warm or the basalts had become buried with a considerable thickness of sediments, such that temperatures increased until a conductive thermal gradient was established, when the veining occurred.
Major oxides, trace elements and rare earth elements of selected basalt samples at DSDP Hole 83-504B
Resumo:
DSDP Hole 504B is the deepest section drilled into oceanic basement, penetrating through a 571.5-m lava pile and a 209-m transition zone of lavas and dikes into 295 m of a sheeted dike complex. To define the basement composition 194 samples of least altered basalts, representing all lithologic units, were analyzed for their major and 26 trace elements. As is evident from the alteration-sensitive indicators H2O+, CO2, S, K, Mn, Zn, Cu, and the iron oxidation ratio, all rocks recovered are chemically altered to some extent. Downhole variation in these parameters enables us to distinguish five depth-related alteration zones that closely correlate with changes in alteration mineralogy. Alteration in the uppermost basement portion is characterized by pronounced K-uptake, sulfur loss, and iron oxidation and clearly demonstrates low-temperature seawater interaction. A very spectacular type of alteration is confined to the depth range from 910 to 1059 m below seafloor (BSF). Rocks from this basement portion exhibit the lowest iron oxidation, the highest H2O+ contents, and a considerable enrichment in Mn, S, Zn, and Cu. At the top of this zone a stockwork-like sulfide mineralization occurs. The chemical data suggest that this basement portion was at one time within a hydrothermal upflow zone. The steep gradient in alteration chemistry above this zone and the ore precipitation are interpreted as the result of mixing of the upflowing hydrothermal fluids with lower-temperature solutions circulating in the lava pile. Despite the chemical alteration the primary composition and variation of the rocks can be reliably established. All data demonstrate that the pillow lavas and the dikes are remarkably uniform and display almost the same range of variation. A general characteristic of the rocks that classify as olivine tholeiites is their high MgO contents (up to 10.5 wt.%) and their low K abundances (-200 ppm). According to their mg-values, which range from 0.60 to 0.74, most basalts appear to have undergone some high-level crystal fractionation. Despite the overall similarity in composition, there are two major basalt groups that have significantly different abundances and ratios of incompatible elements at similar mg-values. The majority of the basalts from the pillow lava and dike sections are chemically closely related, and most probably represent differentiation products of a common parental magma. They are low in Na2O, TiO2, and P2O5, and very low in the more hygromagmaphile elements. Interdigitated with this basalt group is a very rarely occurring basalt that is higher in Na2O, TiO2, P2O5, much less depleted in hygromagmaphile elements, and similar to normal mid-ocean ridge basalt (MORB). The latter is restricted to Lithologic Units 5 and 36 of the pillow lava section and Lithologic Unit 83 of the dike section. The two basalt groups cannot be related by differentiation processes but have to be regarded as products of two different parental magmas. The compositional uniformity of the majority of the basalts suggests that the magma chamber beneath the Costa Rica Rift reached nearly steady-state conditions. However, the presence of lavas and dikes that crystallized from a different parental magma requires the existence of a separate conduit-magma chamber system for these melts. Occasionally mixing between the two magma types appears to have occurred. The chemical characteristics of the two magma types imply some heterogeneity in the mantle source underlying the Costa Rica Rift. The predominant magma type represents an extremely depleted source, whereas the rare magma type presumably originated from regions of less depleted mantle material (relict or affected by metasomatism).
Resumo:
A device and a specific procedure for simultaneous concentration of trace ele¬ments from sea water by co-precipitating them in precipitate of magnesium hydroxide obtained by electrolytic alkalization of samples in a two-chamber electrolyzer are described. Analyses of sea water samples for zinc, iron, copper, nickel and lead demonstrate that the method produces a thousand-fold concentration and gives results that agree well with those obtained by extractive concentration using diethyldithiocarbamate and 8-hydroxyquinoline in chloroform. Extracts were analyzed by flame atomic absorption. Correlation coefficients of results obtained with use of these two methods of concentration were 0.76-0.87 for zinc, iron, and copper at confidence levels of 0.05-0.07. Average zinc and iron concentrations determined by the method differed by less than 10%.