976 resultados para Trace elemental analysis, Cypraea, snails, shell, periostracum, microstructure, organic matrix
Resumo:
Abstract The aim of this study was to assess the effects of a series of different surface coated quantum dots (QDs) (organic, carboxylated [COOH] and amino [NH(2)] polytethylene glycol [PEG]) on J774.A1 macrophage cell viability and to further determine which part of the QDs cause such toxicity. Cytotoxic examination (MTT assay and LDH release) showed organic QDs to induce significant cytotoxicity up to 48 h, even at a low particle concentration (20 nM), whilst both COOH and NH(2) (PEG) QDs caused reduced cell viability and cell membrane permeability after 24 and 48 h exposure at 80 nM. Subsequent analysis of the elements that constitute the QD core, core/shell and (organic QD) surface coating showed that the surface coating drives QD toxicity. Elemental analysis (ICP-AES) after 48 h, however, also observed a release of Cd from organic QDs. In conclusion, both the specific surface coating and core material can have a significant impact on QD toxicity.
Resumo:
Bivalve shells can provide excellent archives of past environmental change but have not been used to interpret ocean acidification events. We investigated carbon, oxygen and trace element records from different shell layers in the mussels Mytilus galloprovincialis combined with detailed investigations of the shell ultrastructure. Mussels from the harbour of Ischia (Mediterranean, Italy) were transplanted and grown in water with mean pHT 7.3 and mean pHT 8.1 near CO2 vents on the east coast of the island. Most prominently, the shells recorded the shock of transplantation, both in their shell ultrastructure, textural and geochemical record. Shell calcite, precipitated subsequently under acidified seawater responded to the pH gradient by an in part disturbed ultrastructure. Geochemical data from all test sites show a strong metabolic effect that exceeds the influence of the low-pH environment. These field experiments showed that care is needed when interpreting potential ocean acidification signals because various parameters affect shell chemistry and ultrastructure. Besides metabolic processes, seawater pH, factors such as salinity, water temperature, food availability and population density all affect the biogenic carbonate shell archive.
Resumo:
Since the advent of the computer into the engineering field, the application of the numerical methods to the solution of engineering problems has grown very rapidly. Among the different computer methods of structural analysis the Finite Element (FEM) has been predominantly used. Shells and space structures are very attractive and have been constructed to solve a large variety of functional problems (roofs, industrial building, aqueducts, reservoirs, footings etc). In this type of structures aesthetics, structural efficiency and concept play a very important role. This class of structures can be divided into three main groups, namely continuous (concrete) shells, space frames and tension (fabric, pneumatic, cable etc )structures. In the following only the current applications of the FEM to the analysis of continuous shell structures will be discussed. However, some of the comments on this class of shells can be also applied to some extend to the others, but obviously specific computational problems will be restricted to the continuous shells. Different aspects, such as, the type of elements,input-output computational techniques etc, of the analysis of shells by the FEM will be described below. Clearly, the improvements and developments occurring in general for the FEM since its first appearance in the fifties have had a significative impact on the particular class of structures under discussion.
Resumo:
The elemental analysis of Spanish palm dates by inductively coupled plasma atomic emission spectrometry and inductively coupled plasma mass spectrometry is reported for the first time. To complete the information about the mineral composition of the samples, C, H, and N are determined by elemental analysis. Dates from Israel, Tunisia, Saudi Arabia, Algeria and Iran have also been analyzed. The elemental composition have been used in multivariate statistical analysis to discriminate the dates according to its geographical origin. A total of 23 elements (As, Ba, C, Ca, Cd, Co, Cr, Cu, Fe, H, In, K, Li, Mg, Mn, N, Na, Ni, Pb, Se, Sr, V, and Zn) at concentrations from major to ultra-trace levels have been determined in 13 date samples (flesh and seeds). A careful inspection of the results indicate that Spanish samples show higher concentrations of Cd, Co, Cr, and Ni than the remaining ones. Multivariate statistical analysis of the obtained results, both in flesh and seed, indicate that the proposed approach can be successfully applied to discriminate the Spanish date samples from the rest of the samples tested.
Resumo:
The gross changes in concentrations of several trace elements in seawater after contact with ferro-manganese particle suspensions has been determined. Cobalt, Fe, and Zn concentrations in the seawater were greatly increased after contact with the par¬ticles. The concentrations of Rb, U, Cs, Sb, and Ag were altered to a lesser degree by this treatment. Similar results were observed where seawater was con¬tacted with suspensions of pelagic sediments. Of the trace elements measured, cobalt and iron appear to be the best elemental indicators of the presence of manganese mining effluents in the ocean. The addi¬tions of the essential elements Co, Fe and Zn toge¬ther with nutrients from the bottom waters may pro¬duce increased biological productivity. However, the toxic trace metals, such as Hg, Cu and Cd which could enter ocean water from the nodules and sedi¬ment and which may be high in effluent-affected areas should be investigated before conclusions as to the likely impact can be reached. Trace element analysis of seawater samples collected at a Pacific Ocean manganese nodule dredging site showed high t race element concentrations, but these are believed to have resulted from contamination during sample collection or storage rather than from the dredging operations.
Resumo:
The aim of this work was to evaluate the performance of femtosecond laser-induced breakdown spectroscopy (fs-LIBS) for the determination of elements in animal tissues. Sample pellets were prepared from certified reference materials, such as liver, kidney, muscle, hepatopancreas, and oyster, after cryogenic grinding assisted homogenization. Individual samples were placed in a two-axis computer-controlled translation stage that moved in the plane orthogonal to a beam originating from a Ti:Sapphire chirped-pulse amplification (CPA) laser system operating at 800 mu and producing a train of 840 mu J and 40 fs pulses at 90 Hz. The plasma emission was coupled into the optical fiber of a high-resolution intensified charge-coupled device (ICCD)-echelle spectrometer. Time-resolved characteristics of the laser-produced plasmas showed that the best results were obtained with delay times between 80 and 120 ns. Data obtained indicate both that it is a matrix-independent sampling process and that fs-LIBS can be used for the determination of Ca, Cu, Fe, K, Mg, Na, and P, but efforts must be made to obtain more appropriate detection limits for Al, Sr, and Zn.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Conservação e Restauro
Resumo:
Dissertação apresentada para a obtenção do Grau de Doutor em Conservação e Restauro, especialidade Ciências da Conservação, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
BACKGROUND: Mitochondrial DNA sequencing increasingly results in the recognition of genetically divergent, but morphologically cryptic lineages. Species delimitation approaches that rely on multiple lines of evidence in areas of co-occurrence are particularly powerful to infer their specific status. We investigated the species boundaries of two cryptic lineages of the land snail genus Trochulus in a contact zone, using mitochondrial and nuclear DNA marker as well as shell morphometrics. RESULTS: Both mitochondrial lineages have a distinct geographical distribution with a small zone of co-occurrence. In the same area, we detected two nuclear genotype clusters, each being highly significantly associated to one mitochondrial lineage. This association however had exceptions: a small number of individuals in the contact zone showed intermediate genotypes (4%) or cytonuclear disequilibrium (12%). Both mitochondrial lineage and nuclear cluster were statistically significant predictors for the shell shape indicating morphological divergence. Nevertheless, the lineage morphospaces largely overlapped (low posterior classification success rate of 69% and 78%, respectively): the two lineages are truly cryptic. CONCLUSION: The integrative approach using multiple lines of evidence supported the hypothesis that the investigated Trochulus lineages are reproductively isolated species. In the small contact area, however, the lineages hybridise to a limited extent. This detection of a hybrid zone adds an instance to the rare reported cases of hybridisation in land snails.
Resumo:
Eight patients with colloid cysts of the third ventricle were examined with CT and MR. In six, surgical resection was performed and the material was subjected to histologic evaluation; the concentrations of trace elements were determined by particle-induced X-ray emission. Stereotaxic aspiration was performed in two. The investigation showed that colloid cysts are often iso- or hypodense relative to brain on CT (5/8), but sometimes have a center of increased density. Increased density did not correlate with increased concentration of calcium or other metals but did not correlate with high cholesterol content. Colloid cysts appear more heterogeneous on MR (6/8) than on CT (3/8), despite a homogeneous appearance at histology. High signal on short TR/TE sequences is correlated with a high cholesterol content. A marked shortening of the T2 relaxation time is often noticed in the central part of the cyst. Analysis of trace elements showed that this phenomenon is not related to the presence of metals with paramagnetic effects. Our analysis of the contents of colloid cysts does not support the theory that differing metallic concentrations are responsible for differences in MR signal intensity or CT density. We did find that increased CT density and high MR signal correlated with high cholesterol content.
Resumo:
A layered matrix, alpha-VOPO4.2H2O was used as host species to produce a VOPO4.dimethylacetamide intercalation compound. The oxovanadium matrix and the synthesized hybrid were characterized by elemental analysis, infrared spectroscopy, thermogravimetry, X-ray diffractometry and SEM microscopy. The X-ray diffraction patterns show that the VOPO4.dimethylacetamide compound is amorphous, but can be turned lamellar after a solubilization-crystallization process. The SEM micrographs obtained for the VOPO4-dimethylacetamide hybrid matrix show that the microstructure of VOPO4.2H2O is changed after reaction, with a delamination of the oxovanadium matrix.
Resumo:
Solid dithizonates of Hg(I), Ag(I) and Bi(III) have been prepared. Thermogravimetry (TG), derivative thermogravimetry (DTG), differential scanning calorimetry (DSC), X ray diffraction powder patterns and elemental analysis have been used to characterize and to study the thermal stability and thermal decomposition of the dithizone and of these dithizonates.
Resumo:
A nanocomposite is a multiphase solid material where one of the phases has one, two or three dimensions of less than 100 nanometers (nm), or structures having nano-scale repeat distances between the different phases that make up the material. In the broadest sense this definition can include porous media, colloids, gels and copolymers, but is more usually taken to mean the solid combination of a bulk matrix and nano-dimensional phase(s) differing in properties due to dissimilarities in structure and chemistry. The mechanical, electrical, thermal, optical, electrochemical, catalytic properties of the nanocomposite will differ markedly from that of the component materials. Size limits for these effects have been proposed, <5 nm for catalytic activity, <20 nm for making a hard magnetic material soft, <50 nm for refractive index changes, and <100 nm for achieving superparamagnetism, mechanical strengthening or restricting matrix dislocation movement. Conducting polymers have attracted much attention due to high electrical conductivity, ease of preparation, good environmental stability and wide variety of applications in light-emitting, biosensor chemical sensor, separation membrane and electronic devices. The most widely studied conducting polymers are polypyrrole, polyaniline, polythiophene etc. Conducting polymers provide tremendous scope for tuning of their electrical conductivity from semiconducting to metallic region by way of doping and are organic electro chromic materials with chemically active surface. But they are chemically very sensitive and have poor mechanical properties and thus possessing a processibility problem. Nanomaterial shows the presence of more sites for surface reactivity, they possess good mechanical properties and good dispersant too. Thus nanocomposites formed by combining conducting polymers and inorganic oxide nanoparticles possess the good properties of both the constituents and thus enhanced their utility. The properties of such type of nanocomposite are strongly depending on concentration of nanomaterials to be added. Conducting polymer composites is some suitable composition of a conducting polymer with one or more inorganic nanoparticles so that their desirable properties are combined successfully. The composites of core shell metal oxide particles-conducting polymer combine the electrical properties of the polymer shell and the magnetic, optical, electrical or catalytic characteristics of the metal oxide core, which could greatly widen their applicability in the fields of catalysis, electronics and optics. Moreover nanocomposite material composed of conducting polymers & oxides have open more field of application such as drug delivery, conductive paints, rechargeable batteries, toners in photocopying, smart windows, etc.The present work is mainly focussed on the synthesis, characterization and various application studies of conducting polymer modified TiO2 nanocomposites. The conclusions of the present work are outlined below, Mesoporous TiO2 was prepared by the cationic surfactant P123 assisted hydrothermal synthesis route and conducting polymer modified TiO2 nanocomposites were also prepared via the same technique. All the prepared systems show XRD pattern corresponding to anatase phase of TiO2, which means that there is no phase change occurring even after conducting polymer modification. Raman spectroscopy gives supporting evidence for the XRD results. It also confirms the incorporation of the polymer. The mesoporous nature and surface area of the prepared samples were analysed by N2 adsorption desorption studies and the mesoporous ordering can be confirmed by low angle XRD measurementThe morphology of the prepared samples was obtained from both SEM & TEM. The elemental analysis of the samples was performed by EDX analysisThe hybrid composite formation is confirmed by FT-IR spectroscopy and X-ray photoelectron spectroscopyAll the prepared samples have been used for the photocatalytic degradation of dyes, antibiotic, endocrine disruptors and some other organic pollutants. Photocatalytic antibacterial activity studies were also performed using the prepared systemsAll the prepared samples have been used for the photocatalytic degradation of dyes, antibiotic, endocrine disruptors and some other organic pollutants. Photocatalytic antibacterial activity studies were also performed using the prepared systems Polyaniline modified TiO2 nanocomposite systems were found to have good antibacterial activity. Thermal diffusivity studies of the polyaniline modified systems were carried out using thermal lens technique. It is observed that as the amount of polyaniline in the composite increases the thermal diffusivity also increases. The prepared systems can be used as an excellent coolant in various industrial purposes. Nonlinear optical properties (3rd order nonlinearity) of the polyaniline modified systems were studied using Z scan technique. The prepared materials can be used for optical limiting Applications. Lasing studies of polyaniline modified TiO2 systems were carried out and the studies reveal that TiO2 - Polyaniline composite is a potential dye laser gain medium.
Resumo:
Three ochre samples (A (orange-red in colour), B (red) and C (purple)) from Clearwell Caves, (Gloucestershire, UK) have been examined using an integrated analytical methodology based on the techniques of IR and diffuse reflectance UV-visible-NIR spectroscopy, X-ray diffraction, elemental analysis by ICP-AES and particle size analysis. It is shown that the chromophore in each case is haematite. The differences in colour may be accounted for by (i) different mineralogical and chemical composition in the case of the orange ochre, where hi,,her levels of dolomite and copper are seen and (ii) an unusual particle size distribution in the case of the purple ochre. When the purple ochre was ground to give the same particle size distribution as the red ochre then the colours of the two samples became indistinguishable. An analysis has now been completed of a range of ochre samples with colours from yellow to purple from the important site of Clearwell Caves. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Inductively coupled plasma mass spectrometry (ICP-MS) was used to investigate changes in trace element concentration in two high resolution sequences of tree rings from central Sweden. Individual annual growth increments from 18002002 to 1930-2002 were sampled from two Scots pine (Pinus sylvestris) trees from the Siljansfors Experimental Forest. The aims of the study were: to test the viability of conventional solution induction ICP-MS as a technique for investigating the multi-elemental chemistry of long tree ring sequences at annual resolution, and, to test this specifically with a view to detecting changes in elemental concentrations of Swedish tree rings contemporary with the major (and relatively proximal) Icelandic eruption of Askja (1875). It was found that despite a time consuming sample preparation process, it was possible to use conventional ICP-MS for multi-elemental analysis of a long sequence of tree rings at annual resolution. Although promising data were produced, no truly conclusive concentration anomaly could be detected in the sequence to indicate the impact of the Askja eruption on environmental chemistry. Overall findings underlined the complexity of the tree/environment interaction and the cautious approach to data interpretation essential for any dendrochemical study. (c) 2006 Elsevier Ltd. All rights reserved.