948 resultados para Toxic trace metals
Resumo:
The toxicity of sediments in Sabine Lake, Texas, and adjoining Intracoastal Waterway canals was determined as part of bioeffects assessment studies managed by NOAA’s National Status and Trends Program. The objectives of the survey were to determine: (1) the incidence and degree of toxicity of sediments throughout the study area; (2) the spatial patterns (or gradients) in chemical contamination and toxicity, if any, throughout the study area; (3) the spatial extent of chemical contamination and toxicity; and (4) the statistical relationships between measures of toxicity and concentrations of chemicals in the sediments. Surficial sediment samples were collected during August, 1995 from 66 randomly-chosen locations. Laboratory toxicity tests were performed as indicators of potential ecotoxicological effects in sediments. A battery of tests was performed to generate information from different phases (components) of the sediments. Tests were selected to represent a range in toxicological endpoints from acute to chronic sublethal responses. Toxicological tests were conducted to measure: reduced survival of adult amphipods exposed to solid-phase sediments; impaired fertilization success and abnormal morphological development in gametes and embryos, respectively, of sea urchins exposed to pore waters; reduced metabolic activity of a marine bioluminescent bacteria exposed to organic solvent extracts; and induction of a cytochrome P-450 reporter gene system in exposures to solvent extracts of the sediments. Chemical analyses were performed on portions of each sample to quantify the concentrations of trace metals, polynuclear aromatic hydrocarbons, and chlorinated organic compounds. Correlation analyses were conducted to determine the relationships between measures of toxicity and concentrations of potentially toxic substances in the samples. Based upon the compilation of results from chemical analyses and toxicity tests, the quality of sediments in Sabine Lake and vicinity did not appear to be severely degraded. Chemical concentrations rarely exceeded effects-based numerical guidelines, suggesting that toxicant-induced effects would not be expected in most areas. None of the samples was highly toxic in acute amphipod survival tests and a minority (23%) of samples were highly toxic in sublethal urchin fertilization tests. Although toxic responses occurred frequently (94% of samples) in urchin embryo development tests performed with 100% pore waters, toxicity diminished markedly in tests done with diluted pore waters. Microbial bioluminescent activity was not reduced to a great degree (no EC50 <0.06 mg/ml) and cytochrome P-450 activity was not highly induced (6 samples exceeded 37.1 ug/g benzo[a]pyrene equivalents) in tests done with organic solvent extracts. Urchin embryological development was highly correlated with concentrations of ammonia and many trace metals. Cytochrome P450 induction was highly correlated with concentrations of a number of classes of organic compounds (including the polynuclear aromatic hydrocarbons and chlorinated compounds). (PDF contains 51 pages)
Resumo:
The Alliance for Coastal Technologies (ACT) Workshop on Trace Metal Sensors for Coastal Monitoring was convened April 11-13, 2005 at the Embassy Suites in Seaside, California with partnership from Moss Landing Marine Laboratories (MLML) and the Monterey Bay Aquarium Research Institute (MBARI). Trace metals play many important roles in marine ecosystems. Due to their extreme toxicity, the effects of copper, cadmium and certain organo-metallinc compounds (such as tributyltin and methylmercury) have received much attention. Lately, the sublethal effects of metals on phytoplankton biochemistry, and in some cases the expression of neurotoxins (Domoic acid), have been shown to be important environmental forcing functions determining the composition and gene expression in some groups. More recently the role of iron in controlling phytoplankton growth has led to an understanding of trace metal limitation in coastal systems. Although metals play an important role at many different levels, few technologies exist to provide rapid assessment of metal concentrations or metal speciation in the coastal zone where metal-induced toxicity or potential stimulation of harmful algal blooms, can have major economic impacts. This workshop focused on the state of on-site and in situ trace element detection technologies, in terms of what is currently working well and what is needed to effectively inform coastal zone managers, as well as guide adaptive scientific sampling of the coastal zone. Specifically the goals of this workshop were to: 1) summarize current regional requirements and future targets for metal monitoring in freshwater, estuarine and coastal environments; 2) evaluate the current status of metal sensors and possibilities for leveraging emerging technologies for expanding detection limits and target elements; and 3) help identify critical steps needed for and limits to operational deployment of metal sensors as part of routine water quality monitoring efforts. Following a series of breakout group discussions and overview talks on metal monitoring regulatory issues, analytical techniques and market requirements, workshop participants made several recommendations for steps needed to foster development of in situ metal monitoring capacities: 1. Increase scientific and public awareness of metals of environmental and biological concern and their impacts in aquatic environments. Inform scientific and public communities regarding actual levels of trace metals in natural and perturbed systems. 2. Identify multiple use applications (e.g., industrial waste steam and drinking water quality monitoring) to support investments in metal sensor development. (pdf contains 27 pages)
Resumo:
In a semi-urbanized stretch of river Kubanni, Zaria, seasonal variations of some tree metals (copper, zinc and lead) in fish species (Clarias sp., Tilapia sp and Alestes sp) were investigated over a period of eight months. Water and fish were sampled monthly, pooled separately and seasonal analysis of each trace determined using atomic absorption method. The concentration of each of the elements in water higher in the dry season than during the rainy season. The dry and rainy season concentrations of copper, zinc and lead were 6.85~c10.66 mu gg super(-1)&1.45~c1.10 mu gg super(-1); 2.13~c1.68 mu gg super(-1)&0.1 5~c0.05 mu gg super(-1); and 0.52~c0.50 mu gg super(-1) & 0.31~c0.14 mu gg super(-1) respectively. Similarly, all the three accumulated more zinc and lead in the dry season than during the rainy season. Tilapia species and to some extent, Alestes species being pelagic had a higher concentration of trace metals than Clarias species which is a bottom dwelling fish Tilapia species may therefore be a better indicator species than Clarias species for monitoring trace metals in water bodies. Reasons for the observed variations in the trace metals were discussed
Resumo:
Marine mammals, such as dolphins, can serve as key indicator species in coastal areas by reflecting the effects of natural and anthropogenic stressors. As such they are often considered sentinels of environmental and ecosystem health (Bossart 2006; Wells et al. 2004; Fair and Becker 2000). The bottlenose dolphin is an apex predator and a key component of many estuarine environments in the southeastern United States (Woodward-Clyde Consultants 1994; SCDNR 2005). Health assessments of dolphins are especially critical in areas where populations are depleted, show signs of epidemic disease and/or high mortality and/or where habitat is being altered or impacted by human activities. Recent assessments of environmental conditions in the Indian River Lagoon, Florida (IRL) and the estuarine waters surrounding Charleston, South Carolina (CHS) highlight the need for studies of the health of local bottlenose dolphins. While the condition of southeastern estuaries was rated as fair in the National Coastal Condition Report (U.S. EPA 2001), it was noted that the IRL was characterized by poorer than expected benthic communities, significant sediment toxicity and increased nutrient concentrations. Similarly, portions of the CHS estuary have sediment concentrations of aliphatic aromatic hydrocarbons, select inorganic metals, and some persistent pesticides far in excess of reported bioeffect levels (Hyland et al. 1998). Long-term trends in water quality monitoring and recent scientific research suggest that waste load assimilation, non-point source runoff impacts, contaminated sediments, and toxic pollutants are key issues in the CHS estuary system. Several ‘hot spots’ with high levels of heavy metals and organic compounds have been identified (Van Dolah et al. 2004). High concentrations of anthropogenic trace metals, polychlorinated biphenyls (PCB’s) and pesticides have been found in the sediments of Charleston Harbor, as well as the Ashley and Cooper Rivers (Long et al. 1998). Two superfund sites are located within the CHS estuary and the key contaminants of concern associated with these sites are: polycyclic aromatic hydrocarbons (PAH), lead, chromium, copper, arsenic, zinc and dioxin. Concerns related to the overall health of IRL dolphins and dermatologic disease observed in many dolphins in the area (Bossart et al. 2003) initiated an investigation of potential factors which may have impacted dolphin health. From May-August 2001, 35 bottlenose dolphins died in the IRL during an unusual mortality event (MMC 2003). Many of these dolphins were diagnosed with a variety of skin lesions including proliferative ulcerative dermatitis due to protozoa and fungi, dolphin pox and a vesicular dermatopathy of unknown etiology (Bossart et al. 2003). Multiple species from fish to dolphins in the IRL system have exhibited skin lesions of various known and unknown etiologies (Kane et al. 2000; Bossart et al. 2003; Reif et al. 2006). On-going photo-identification (photo-ID) studies have documented skin diseases in IRL dolphins (Mazzoil et al. 2005). In addition, up to 70% of green sea turtles in the IRL exhibit fibropapillomas, with the highest rates of occurrence being seen in turtles from the southern IRL (Hirama 2001).
Resumo:
The marine environment near Karachi, particularly the Baba channel, Chari Kundi channel and Manora channel have been found contaminated with industrial effluents discharged by Malir and Lyari rivers, since they carry a high concentration of toxic heavy metals viz. Pb, Zn, Cu and Mn emanating from the industrial area and are received and discharged by the Lyari river. Out of 60 seawater samples collected from the above mentioned areas, Pb was present in 55 samples and Zn in 58 samples. The concentration of Pb was between 0.04 and 59.2ppm and the concentration of Zn was between 0.05 and 1.9ppm. Similarly all the 60 sludge samples collected from Lyari outfall and its adjoining area have been found to contain Pb and Zn in alarmingly high concentratios, which for Pb was between 15.4 and 3209.9ppm while for Zn was between 87 and 111.3ppm. Cu and Mn were also found in all the above samples.
Resumo:
Although other research studies on areas such as the physical-chemical, nutrients and phytoplankton status of Lake Kyoga systems have been given a lot of attention (e.g. Mungoma 1988 and NaFIRRI 2006), efforts to determine the pollution status of this system, especially by heavy metals as one of the worldwide emerging environmental problems, is still limited. Many trace metals are regarded as serious pollutants of aquatic ecosystems because of their persistence, toxicity and ability to be incorporated into food chains (Mwamburi J., and Nathan O.F., 1997). Given the rapid human population growth and the associated economic activities both within the rural and urban areas in Uganda, such fish production systems are becoming very prone to various kinds of pollution including that by heavy metals. Anthropogenic factors such deforestation, use of chemicals and dumping of metallic products, spillages of fuels from outboard engines and many others and or natural processes involving atmospheric deposition by wind or rain, surface run-offs and streams flows from the catchment introduces heavy metals into the lake environment,.
Resumo:
Trace elements associated with organic subfractions (humic, fulvic, and non-humic substances) were identified for seven core sediments from Lake Mariut, Egypt. Results indicated that the amounts of trace metals in humic acid and non-humic substances decreased in the following order: Zn>Cu>Pb>Cr>Cd, while in fulvic acid the order the order was Cu>Zn>Pb>Cr>Cd. There is a higher contribution of Zn, Pb, Cu and Cr in humic acid compared to fulvic acid in most samples. Slight changes in the amounts of cadmium bounded with humic and fulvic acids was also found.
Resumo:
Metal contents of surface sediments were analyzed temporally and spatially in Lake Chaohu, China. No obvious temporal variations were observed, which probably due to physio- and bio- mixing, e.g. wind and microbes, in this lake. Enrichment factor of some metals were generally greater than 1.0, suggesting significant anthropogenic impact on metal levels. Significantly positive correlations between concentrations of nutrient and metals indicated that the nutrients transported to this lake contributed, to some extent, to the enrichment of metals. The correlation between trace metals concentrations indicated the co-contamination of anthropogenically derived metal enrichment in surface sediment of Lake Chaohu.
Resumo:
The acid-volatile sulfide (AVS), simultaneously extracted metals (SEM), total metals, and chemical partitioning in the sediment cores of the Pearl River Estuary (PRE) were studied. The concentrations of total metals, AVS, and SEM in the sediment cores were generally low in the river outlet area, increased along the seaward direction, and decreased again at the seaward boundary of the estuary. The amounts of AVS were generally greater in deeper sediments than in surface sediments. SEM/AVS was > 1 in the surface sediments and in the river outlet cores. The ratio was < 1 in the sediments down the profiles, suggesting that AVS might play a major role in binding heavy metals in the deep sediments of the PRE. The SEM may contain different chemical forms of trace metals in the sediments, depending on the metal reaction with 1 M cold HCl in the AVS procedure compared with the results of the sequential chemical extraction. The SEM/AVS ratio prediction may overestimate trace metal availability even in the sediments with high AVS concentrations. (c) 2004 Elsevier Inc. All rights reserved.
Resumo:
Suspended particulate matter (SPM), sediments and clams were collected at three sites in Jiaozhou Bay to assess the magnitude of trace metal pollution in the area. Metal concentrations in SPM (Cu: 40.11-203; Zn: 118-447; Pb: 50.1-132; Cd: 0.55-4.39; Cr: 147.6-288; Mn: 762-1670 mu g/g), sediments (Cu: 17.64-34.26; Zn: 80.79-110; Pb: 24.57-49.59; Cd: 0.099-0.324; Cr: 41.6-88.1; Mn: 343-520 mu g/g) and bivalves (Cu: 6.41-19.76; Zn: 35.5-85.5; Pb: 0.31-1.01; Cd: 0.51-0.67; Mn: 27.45-67.6 mu g/g) are comparable to those reported for other moderately polluted world environments. SPM showed a less clear pattern. Metal concentrations in sediments displayed a clear geographical trend with values increasing with proximity to major urban centers. The clams (on dry weight) showed a complex pattern due to the variability introduced by age-related factors. Cd showed an apparent reverse industrial trend with higher concentrations in clams collected at distant stations. Zn, Pb and Mn showed no clear geographical pattern, whereas Cu increased in the clams collected in the most industrialized area. In addition, the bioaccumulation factors (BAF) were calculated. The result indicated that the studied Ruditapes philippinarum in Jiaozhou Bay possessed different bioaccumulation capacities for Cd, Zn, Cu, Pb and Mn, and Cd, Zn had a relatively high assimilation of those metals from sediment particles. A significant relationship with clam age was observed for Zn (positive) and Cu (negative) suggesting different physiological requirements for both metals with age. Trace metal concentrations measured in the tissue of the investigated clam were in the range considered safe by the WHO for human use.
Resumo:
A novel diffusive gradients in thin film probe developed comprises diffusive gel layer of silver iodide (AgI) and a back-up Microchelex resin gel layer. 2D high-resolution images of sulfide and trace metals were determined respectively on the AgI gel by densitometric analysis and on the Microchelex resin layer with laser-ablation-inductively-coupled plasma mass spectrometry (LA-ICP-MS).We investigated the validity of the analytical procedures used for the determination of sulfide and trace metals. We found low relative standard deviations on replicate measurements, linear trace-metal calibration curves between the LA-ICP-MS signal and the true trace-metal concentration in the resin gel, and a good agreement of the sulfide results obtained with the AgI resin gel and with other analytical methods. The method was applied on anoxic sediment pore waters in an estuarine and marine system. Simultaneous remobilization of sulfide and trace metals was observed in the marine sediment.
Resumo:
With biochar becoming an emerging soil amendment and a tool to mitigate climate change, there are only a few studies documenting its effects on trace element cycling in agriculture. Zn and Cu are deficient in many human diets, whilst exposures to As, Pb and Cd need to be decreased. Biochar has been shown to affect many of them mainly at a bench or greenhouse scale, but field research is not available. In our experiment we studied the impact of biochar, as well as its interactions with organic (compost and sewage sludge) and mineral fertilisers (NPK and nitrosulfate), on trace element mobility in a Mediterranean agricultural field (east of Madrid, Spain) cropped with barley. At harvesting time, we analysed the soluble fraction, the available fraction (assessed with the diffusive gradients in thin gels technique, DGT) and the concentration of trace elements in barley grain. No treatment was able to significantly increase Zn, Cu or Ni concentration in barley grain, limiting the application for cereal fortification. Biochar helped to reduce Cd and Pb in grain, whereas As concentration slightly increased. Overall biochar amendments demonstrated a potential to decrease Cd uptake in cereals, a substantial pathway of exposure in the Spanish population, whereas mineral fertilisation and sewage sludge increased grain Cd and Pb. In the soil, biochar helped to stabilise Pb and Cd, while marginally increasing As release/mobilisation. Some of the fertilisation practises or treatments increased toxic metals and As solubility in soil, but never to an extent high enough to be considered an environmental risk. Future research may try to fortify Zn, Cu and Ni using other combinations of organic amendments and different parent biomass to produce enriched biochars.
Resumo:
No presente trabalho, foi avaliado o desempenho e a aplicabilidade do eléctrodo de filme fino de mercúrio, em estudos de especiação dinâmica de metais vestigiais. Para tal, foram utilizadas duas técnicas electroanalíticas de redissolução: a clássica Voltametria de Redissolução Anódica (ASV) e a recentemente desenvolvida, Cronopotenciometria de Redissolução com varrimento do potencial de deposição (SSCP). As propriedades de troca-iónica e de transporte de massa de películas mistas preparadas a partir de dois polímeros com características distintas, o Nafion (NA) e o 4-Poliestireno sulfonato de sódio (PSS), foram avaliadas, antes da sua aplicação no âmbito da especiação de metais. Estas películas de NA-PSS demonstraram uma elevada sensibilidade, reprodutibilidade, estabilidade mecânica, bem como, propriedades de anti-bloqueio adequadas na modificação química do eléctrodo de filme fino de mercúrio (TMFE) e, na sua aplicação na determinação de catiões metálicos vestigiais em amostras complexas, por ASV. Para além disso, o desempenho de membranas do polielectrólito PSS em estudos de voltametria de troca-iónica (IEV) foi estudado. O objectivo desta investigação foi reunir as condições ideais na preparação de películas de PSS estáveis e com uma densidade de carga negativa elevada, de modo a aumentar a acumulação electrostática de catiões metálicos no filme polimérico e por conseguinte, conseguir incrementos no sinal voltamétrico. O desempenho e aplicabilidade do TMFE em estudos de especiação de metais vestigiais foram extendidos à SSCP como técnica analítica. Dada a elevada sensibilidade e resolução evidenciada pelo TMFE, este revelou ser uma alternativa adequada aos eléctrodos de mercúrio convencionais, podendo ser utilizado durante um dia de trabalho, sem degradação aparente do sinal analítico de SCP. As curvas de SSCP obtidas experimentalmente utilizando o TMFE estavam em concordância com aquelas previstas pela teoria. Para além disso, a constante de estabilidade (K) calculada a partir do desvio do potencial de meia-onda, para dois sistemas metal-complexo lábeis, aproxima-se não só do valor teórico, como também daquele obtido utilizando o eléctrodo de mercúrio de gota suspensa (HMDE). Adicionalmente, o critério experimental de labilidade inerente a esta técnica foi validado e o grau de labilidade para um dado sistema metal-complexo foi determinado, utilizando o filme fino de mercúrio depositado sob um eléctrodo rotativo (TMF-RDE). Este eléctrodo é muito útil na determinação de parâmetros cinéticos, como é o caso da constante de velocidade de associação (ka), uma vez que as condições hidrodinâmicas, durante a etapa de deposição, se encontram bem definidas.
Resumo:
Senior thesis written for Oceanography 445
Resumo:
Les métaux lourds (ML) s’accumulent de plus en plus dans les sols à l’échelle mondiale, d’une part à cause des engrais minéraux et divers produits chimiques utilisés en agriculture intensive, et d’autre part à cause des activités industrielles. Toutes ces activités génèrent des déchets toxiques qui s’accumulent dans l’environnement. Les ML ne sont pas biodégradables et leur accumulation cause donc des problèmes de toxicité des sols et affecte la biodiversité des microorganismes qui y vivent. La fertilisation en azote (N) est une pratique courante en agriculture à grande échelle qui permet d’augmenter la fertilité des sols et la productivité des cultures. Cependant, son utilisation à long terme cause plusieurs effets néfastes pour l'environnement. Par exemple, elle augmente la quantité des ML dans les sols, les nappes phréatiques et les plantes. En outre, ces effets néfastes réduisent et changent considérablement la biodiversité des écosystèmes terrestres. La structure des communautés des champignons mycorhiziens à arbuscules (CMA) a été étudiée dans des sols contaminés par des ML issus de la fertilisation à long terme en N. Le rôle des différentes espèces de CMA dans l'absorption et la séquestration des ML a été aussi investigué. Dans une première expérience, la structure des communautés de CMA a été analysée à partir d’échantillons de sols de sites contaminés par des ML et de sites témoins non-contaminés. Nous avons constaté que la diversité des CMA indigènes a été plus faible dans les sols et les racines des plantes récoltées à partir de sites contaminés par rapport aux sites noncontaminés. Nous avons également constaté que la structure de la communauté d'AMF a été modifiée par la présence des ML dans les sols. Certains ribotypes des CMA ont été plus souvent associés aux sites contaminés, alors que d’autres ribotypes ont été associés aux sites non-contaminés. Cependant, certains ribotypes ont été observés aussi bien dans les sols pollués que non-pollués. Dans une deuxième expérience, les effets de la fertilisation organique et minérale (N) sur les différentes structures des communautés des CMA ont été étudiés. La variation de la structure de la communauté de CMA colonisant les racines a été analysée en fonction du type de fertilisation. Certains ribotypes de CMA étaient associés à la fertilisation organique et d'autres à la fertilisation minérale. En revanche, la fertilisation minérale a réduit le nombre de ribotypes de CMA alors que la fertilisation organique l’a augmenté. Dans cette expérience, j’ai démontré que le changement de structure des communautés de CMA colonisant des racines a eu un effet significatif sur la productivité des plantes. Dans une troisième expérience, le rôle de deux espèces de CMA (Glomus irregulare et G. mosseae) dans l'absorption du cadmium (Cd) par des plants de tournesol cultivés dans des sols amendés avec trois niveaux différents de Cd a été évalué. J’ai démontré que les deux espèces de CMA affectent différemment l’absorption ou la séquestration de ce ML par les plants de tournesol. Cette expérience a permis de mieux comprendre le rôle potentiel des CMA dans l'absorption des ML selon la concentration de cadmium dans le sol et les espèces de CMA. Mes recherches de doctorat démontrent donc que la fertilisation en N affecte la structure des communautés des CMA dans les racines et le sol. Le changement de structure de la communauté de CMA colonisant les racines affecte de manière significative la productivité des plantes. J’ai aussi démontré que, sous nos conditions expériemntales, l’espèce de CMA G. irregulare a été observée dans tous les sites (pollués et non-pollués), tandis que le G. mosseae n’a été observé en abondance que dans les sites contaminés. Par conséquent, j’ai étudié le rôle de ces deux espèces (G. irregulare et G. mosseae) dans l'absorption du Cd par le tournesol cultivé dans des sols amendés avec trois différents niveaux de Cd en serre. Les résultats indiquent que les espèces de CMA ont un potentiel différent pour atténuer la toxicité des ML dans les plantes hôtes, selon le niveau de concentration en Cd. En conclusion, mes travaux suggèrent que le G. irregulare est une espèce potentiellement importante pour la phytoextration du Cd, alors que le G. mosseae pourrait être une espèce appropriée pour phytostabilisation du Cd et du Zn.