938 resultados para Torsional Stiffness


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background & aims The consumption of long chain n − 3 polyunsaturated fatty acids (LC n − 3 PUFA) is known to be cardio-protective. Data on the influence of LC n − 3 PUFA on arterial stiffness in the postprandial state is limited. The aim of this study was to investigate the acute effects of a LC n − 3 PUFA-rich meal on measures of arterial stiffness. Methods Twenty-five healthy subjects (12 men, 13 women) received a control and a LC n − 3 PUFA-rich meal on two occasions in a random order. Arterial stiffness was measured at baseline, 30, 60, 90, 120, 180 and 240 min after meal consumption by pulse wave analysis and digital volume pulse to derive an augmentation index and a stiffness index respectively. Blood samples were taken for measurement of lipids, glucose and insulin. Results Consumption of the LC n − 3 PUFA-rich meal had an attenuating effect on augmentation index (P = 0.02) and stiffness index (P = 0.03) compared with the control meal. A significant treatment effect (P = 0.036) was seen for plasma non-esterified fatty acids concentrations. Conclusions These data indicate that acute LC n − 3 PUFA-rich meal consumption can improve postprandial arterial stiffness. This has important implications for the beneficial properties of LC n − 3 PUFA and cardiovascular risk reduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arterial stiffness is an independent predictor of cardiovascular disease events and mortality, and like blood pressure, may be influenced by dairy food intake. Few studies have investigated the effects of consumption of these foods on prospective measures of arterial stiffness. The present analysis aimed to investigate the prospective relationship between milk, cheese, cream, and butter consumption and aortic pulse wave velocity, augmentation index, systolic and diastolic blood pressure, as well as cross-sectional relationships between these foods and systolic and diastolic blood pressure and metabolic markers using data from the Caerphilly Prospective Study. Included in this cohort were 2512 men, aged 45 to 59 years, who were followed up at 5-year intervals for a mean of 22.8 years (number follow-up 787). Augmentation index was 1.8% lower in subjects in the highest quartiles of dairy product intake compared with the lowest (P trend=0.021), whereas in the highest group of milk consumption systolic blood pressure was 10.4 mm Hg lower (P trend=0.033) than in nonmilk consumers after a 22.8-year follow-up. Cross-sectional analyses indicated that across increasing quartiles of butter intake, insulin (P trend=0.011), triacylglycerol (P trend=0.023), total cholesterol (P trend=0.002), and diastolic blood pressure (P trend=0.027) were higher. Across increasing groups of milk intake and quartiles of dairy product intake, glucose (P trend=0.032) and triglyceride concentrations (P trend=0.031) were lower, respectively. The present results confirm that consumption of milk predicts prospective blood pressure, whereas dairy product consumption, excluding butter, is not detrimental to arterial stiffness and metabolic markers. Further research is needed to better understand the mechanisms that underpin these relationships.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and aims: Arterial stiffness is an independent predictor of cardiovascular disease (CVD) events and all-cause mortality and may be differentially affected by dietary fatty acid (FA) intake. The aim of this study was to investigate the relationship between FA consumption and arterial stiffness and blood pressure in a community-based population. Methods and results: The Caerphilly Prospective Study recruited 2398 men, aged 45-59 years, who were followed up at 5-year intervals for a mean of 17.8-years (n 787). A semi-quantitative food frequency questionnaire estimated intakes of total, saturated, mono- and poly-unsaturated fatty acids (SFA, MUFA, PUFA). Multiple regression models investigated associations between intakes of FA at baseline with aortic pulse wave velocity (aPWV), augmentation index (AIx), systolic and diastolic blood pressure (SBP, DBP) and pulse pressure after a 17.8-year follow-up - as well as cross-sectional relationships with metabolic markers. After adjustment, higher SFA consumption at baseline was associated with higher SBP (P = 0.043) and DBP (P = 0.002) and after a 17.8-year follow-up was associated with a 0.51 m/s higher aPWV (P = 0.006). After adjustment, higher PUFA consumption at baseline was associated with lower SBP (P = 0.022) and DBP (P = 0.036) and after a 17.8-year follow-up was associated with a 0.63 m/s lower aPWV (P = 0.007). Conclusion: This study suggests that consumption of SFA and PUFA have opposing effects on arterial stiffness and blood pressure. Importantly, this study suggests that consumption of FA is an important risk factor for arterial stiffness and CVD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract BACKGROUND: Cinnamon has been shown to delay gastric emptying of a high-carbohydrate meal and reduce postprandial glycemia in healthy adults. However, it is dietary fat which is implicated in the etiology and is associated with obesity, type 2 diabetes and cardiovascular disease. We aimed to determine the effect of 3 g cinnamon (Cinnamomum zeylanicum) on GE, postprandial lipemic and glycemic responses, oxidative stress, arterial stiffness, as well as appetite sensations and subsequent food intake following a high-fat meal. METHODS: A single-blind randomized crossover study assessed nine healthy, young subjects. GE rate of a high-fat meal supplemented with 3 g cinnamon or placebo was determined using the 13C octanoic acid breath test. Breath, blood samples and subjective appetite ratings were collected in the fasted and during the 360 min postprandial period, followed by an ad libitum buffet meal. Gastric emptying and 1-day fatty acid intake relationships were also examined. RESULTS: Cinnamon did not change gastric emptying parameters, postprandial triacylglycerol or glucose concentrations, oxidative stress, arterial function or appetite (p < 0.05). Strong relationships were evident (p < 0.05) between GE Thalf and 1-day palmitoleic acid (r = -0.78), eiconsenoic acid (r = -0.84) and total omega-3 intake (r = -0.72). The ingestion of 3 g cinnamon had no effect on GE, arterial stiffness and oxidative stress following a HF meal. CONCLUSIONS: 3 g cinnamon did not alter the postprandial response to a high-fat test meal. We find no evidence to support the use of 3 g cinnamon supplementation for the prevention or treatment of metabolic disease. Dietary fatty acid intake requires consideration in future gastrointestinal studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increased vascular stiffness, endothelial dysfunction, and isolated systolic hypertension are hallmarks of vascular aging. Regular cocoa flavanol (CF) intake can improve vascular function in healthy young and elderly at-risk individuals. However, the mechanisms underlying CF bioactivity remain largely unknown. We investigated the effects of CF intake on cardiovascular function in healthy young and elderly individuals without history, signs, or symptoms of cardiovascular disease by applying particular focus on functional endpoints relevant to cardiovascular aging. In a randomized, controlled, double-masked, parallel-group dietary intervention trial, 22 young (<35yrs) and 20 elderly (50-80yrs) healthy, male non- smokers consumed either a CF-containing drink (450mg CF) or nutrient-matched, CF-free control drink bi-daily for 14 days. The primary endpoint was endothelial function as measured by flow-mediated vasodilation (FMD). Secondary endpoints included cardiac output, vascular stiffness, conductance of conduit and resistance arteries, and perfusion in the microcirculation. Following 2 weeks of CF intake, FMD improved in young (6.1±0.7% vs. 7.6±0.7%, p<0.001) and elderly (4.9±0.6% vs. 6.3±0.9%, p<0.001). Secondary outcomes demonstrated in both groups that CF intake decreased pulse wave velocity and lowered total peripheral resistance, increased arteriolar- and microvascular vasodilator capacity, red cell deformability, and diastolic blood pressure, while cardiac output remained affected. In the elderly, baseline systolic blood pressure was elevated, driven by an arterial stiffness-related augmentation. CF intake decreased aortic augmentation index (-9%), and thus systolic blood pressure (-7mmHg). (Clinicaltrials.gov:NCT01639781) CF intake reverses age-related burden of cardiovascular risk in healthy elderly, highlighting the potential of dietary flavanols to maintain cardiovascular health.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is much speculation with regard to the potential cardioprotective benefits of equol, a microbial-derived metabolite of the isoflavone daidzein, which is produced in the large intestine after soy intake in 30% of Western populations. Although cross-sectional and retrospective data support favorable associations between the equol producer (EP) phenotype and cardiometabolic health, few studies have prospectively recruited EPs to confirm this association. The aim was to determine whether the acute vascular benefits of isoflavones differ according to EP phenotype and subsequently investigate the effect of providing commercially produced S-(–)equol to non-EPs. We prospectively recruited male EPs and non-EPs (n = 14/ group) at moderate cardiovascular risk into a double-blind, placebocontrolled crossover study to examine the acute effects of soy isoflavones (80-mg aglycone equivalents) on arterial stiffness [carotid-femoral pulse-wave velocity (cfPWV)], blood pressure, endothelial function (measured by using the EndoPAT 2000; Itamar Medical), and nitric oxide at baseline (0 h) and 6 and 24 h after intake. In a separate assessment, non-EPs consumed 40 mg S-(–)equol with identical vascular measurements performed 2 h after intake. After soy intake, cfPWV significantly improved in EPs at 24 h (cfPWV change from 0 h: isoflavone, 20.2 6 0.2 m/s; placebo, 0.6 6 0.2 m/s; P , 0.01), which was significantly associated with plasma equol concentrations (R = 20.36, P = 0.01). No vascular effects were observed in EPs at 6 h or in non-EPs at any time point. Similarly, no benefit of commercially produced S-(–)equol was observed in non-EPs despite mean plasma equol concentrations reaching 3.2 mmol/L. Acute soy intake improved cfPWV in EPs, equating to an 11–12% reduced risk of cardiovascular disease if sustained. However, a single dose of commercially produced equol had no cardiovascular benefits in non-EPs. These data suggest that the EP phenotype is critical in unlocking the vascular benefits of equol in men, and long-term trials should focus on confirming the implications of EP phenotype on cardiovascular health. This trial was registered at clinicaltrials.gov as NCT01530893. Am J Clin Nutr doi: 10.3945/ajcn.115.125690.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synthetic tripeptide based noncytotoxic hydrogelators have been discovered for releasing an anticancer drug at physiological pH and temparature. Interestingly, gel stiffness, drug release capacity and proteolytic stability of these hydrogels have been successfully modulated by incorporating D-amino acid residues, indicating their potential use for drug delivery in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the effect of thermal disorder on the electronic structure of one-dimensional poly-para-phenylene (PPP). In a real chain the torsion angles between rings are bound to be distributed over a range of values, which depend on temperature, and thus the chain is intrinsically disordered. In this study we simulated this kind of thermally induced off-diagonal disorder through the simple Huckel method. We base our Hamiltonian on ab initio results for the effect of temperature on torsion angles, and the effect of torsion angles on the energy gap. We analyze the electronic structure of 200-monomer-long chains focusing on the density of states, and the associated localization character (measured by the inverse participation ratio). Our results contrast with the usually assumed Gaussian-shaped density of localized states for disordered systems. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Artificial muscles are of practical interest, but few types have been commercially exploited. Typical problems include slow response, low strain and force generation, short cycle life, use of electrolytes, and low energy efficiency. We have designed guest-filled, twist-spun carbon nanotube yarns as electrolyte-free muscles that provide fast, high-force, large-stroke torsional and tensile actuation. More than a million torsional and tensile actuation cycles are demonstrated, wherein a muscle spins a rotor at an average 11,500 revolutions/minute or delivers 3% tensile contraction at 1200 cycles/minute. Electrical, chemical, or photonic excitation of hybrid yarns changes guest dimensions and generates torsional rotation and contraction of the yarn host. Demonstrations include torsional motors, contractile muscles, and sensors that capture the energy of the sensing process to mechanically actuate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Engineers often face the challenge of reducing the level of vibrations experienced by a given payload or those transmitted to the support structure to which a vibrating source is attached. In order to increase the range over which vibrations are isolated, soft mounts are often used in practice. The drawback of this approach is the static displacement may be too large for reasons of available space for example. Ideally, a vibration isolator should have a high-static stiffness, to withstand static loads without too large a displacement, and at the same time, a low dynamic stiffness so that the natural frequency of the system is as low as possible which will result in an increased isolation region. These two effects are mutually exclusive in linear isolators but can be overcome if properly configured nonlinear isolators are used. This paper is concerned with the characterisation of such a nonlinear isolator comprising three springs, two of which are configured to reduce the dynamic stiffness of the isolator. The dynamic behaviour of the isolator supporting a lumped mass is investigated using force and displacement transmissibility, which are derived by modelling the dynamic system as a single-degree-of-freedom system. This results in the system dynamics being approximately described by the Duffing equation. For a linear isolator, the dynamics of the system are the same regardless if the source of the excitation is a harmonic force acting on the payload (force transmissibility) or a harmonic motion of the base (displacement transmissibility) on which the payload is mounted. In this paper these two expressions are compared for the nonlinear isolator and it is shown that they differ. A particular feature of the displacement transmissibility is that the response is unbounded at the nonlinear resonance frequency unless the damping in the isolator is greater than some threshold value, which is not the case for force transmissibility. An explanation for this is offered in the paper. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of an experimental switching stiffness device fcr shock isolation is presented. The system uses magnetic forces to exert a restoring force, which results in an effective stiffness that is used to isolate a payload. When the magnetic force is turned on and off, a switchable stiffness is obtained. Characterization of the physical properties of the device is presented. They are estimated in terms of the percentage stiffness change and effective damping ratio when switched between two constant stiffness states. Additionally, the setup is used to implement a control strategy to reduce the shock response and minimize residual vibration. The system was found to be very effective for shock isolation. The response is reduced by around 50 percent compared with passive isolation showing good correlation with theoretical predictions, and the effective damping ratio in the system following the shock was increased from about 4.5 percent to 13 percent. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of changes in the bulk dielectric constant on the DNA torsional properties was evaluated from plasmid circularization reactions. In these reactions, pUC18 previously linearized by EcoRI digestion was recircularized with T4 DNA ligase. The bulk dielectric constant of the reaction medium was decreased by the addition of different concentrations of neutral solutes: ethylene glycol, glycerol, sorbitol, and sucrose, or increased by the addition of glycine. The topoisomers generated by the ligase reaction were resolved by agarose-gel electrophoresis. The DNA twist energy parameter (K), which is an apparent torsional constant, was determined by linearization of the Gaussian topoisomers' distribution. It was observed that the twist energy parameter for the given solutes is almost linearly dependent on the bulk dielectric constant. In the reaction buffer, the twist energy parameter was determined to be 1100 +/- 100. By decreasing the dielectric constant to 74 with the addition of sorbitol, the value of the parameter reaches K = 900 +/- 100, whereas the addition of ethylene glycol leads to kappa = 400 +/- 50. Upon addition of glycine, which resulted in a dielectric constant equal to 91, the value of the twist energy parameter increased to K 1750 +/- 100. (c) 2007 Wiley Periodicals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work, a method for rotor support stiffness estimation via a model updating process using the sensitivity analysis is presented. This method consists in using the eigenvalues sensitivity analysis, relating to the rotor support stiffnesses variation to perform the adjustment of the model based on the minimization of the difference between eigenvalues of reference and eigenvalues obtained via mathematical model from previously adopted support bearing stiffness values. The mathematical model is developed by the finite element method and the method of adjustment should converge employing an iterative process. The performance and robustness of the method have been analyzed through a numerical example.