984 resultados para Tool wear


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Carbon fibre reinforced polymers (CFRP) are increasingly being used in the aerospace, automotive and defence industry due to their high specific stiffness and good corrosion resistance. In a modern aircraft, 50-60% of its structure is made up of CFRP material while the remainder is mostly a combination of metallic alloys (typically aluminium or titanium alloys). Mechanical fastening (bolting or riveting) of CFRP and metallic components has thus created a pressing requirement of drilling several thousand holes per aircraft. Drilling of stacks in a single-shot not only saves time, but also ensures proper alignment when fasteners are inserted, achieving tighter geometric tolerances. However, this requirement poses formidable manufacturing challenges due to the fundamental differences in the material properties of CFRP and metals e.g. a drill bit entering into the stack encounters brittle and abrasive CFRP material as well as the plastic behaviour of the metallic alloy, making the drilling process highly non-linear.

Over the past few years substantial efforts have been made in this direction and majority of the research has tried to establish links between how the process parameters (feed, depth of cut, cutting speed), tooling (geometry, material and coating) and the wear of the cutting tool affect the hole quality. Similarly, multitudes of investigations have been conducted to determine the effects of non-traditional drilling methods (orbital, helical and vibration assisted drilling), cutting zone temperatures and efficiency of chip extraction on the hole quality and rate of tool wear during single shot drilling of CFRP/alloy stacks.

In a timely effort, this paper aims at reviewing the manufacturing challenges and barriers faced when drilling CFRP/alloy stacks and to summarise various factors influencing the drilling process while detailing the advances made in this fertile research area of single-shot drilling of stack materials. A survey of the key challenges associated with avoiding workpiece damage and the effect these challenges have on tool design and process optimisation is presented. An in depth critique of suitable hole making methods and their aptness for commercialisation follows. The paper concludes by summarising the future work required to achieve repeatable, high quality single shot drilled holes in CFRP/alloy stacks.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents an FEM analysis conducted for optimally designing end mill cutters through verifying the cutting tool forces and stresses for milling Titanium alloy Ti-6Al-4 V. Initially, the theoretical tool forces are calculated by considering the cutting edge on a cutting tool as the curve of an intersection over a spherical/flat surface based on the model developed by Lee & Altinas [1]. Considering the lowest tool forces the cutting tool parameters are taken and optimal design of end mill is decided for different sizes. Then the 3D CAD models of the end mills are developed and used for Finite Element Method to verify the cutting forces for milling Ti-6Al-4 V. The cutting tool forces, stress, strain concentration (s), tool wear, and temperature of the cutting tool with the different geometric shapes are simulated considering Ti-6Al-4 V as work piece material. Finally, the simulated and theoretical values are compared and the optimal design of cutting tool for different sizes are validated. The present approach considers to improve the quality of machining surface and tool life with effects of the various parameters concerning the oblique cutting process namely axial, radial and tangential forces. Various simulated test cases are presented to highlight the approach on optimally designing end mill cutters.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The machining of hardened steel is becoming increasingly important in manufacturing processes. Machined parts made with hardened steel are often subjected to high service demands, which require great resistance and quality. The machining of this material submits the tools to high mechanical and thermal loads, which increases the tool wear and affects the surface integrity of the part. In that context, this work presents a study of drilling of AISI P20 steel with carbide tools, analyzing the effects on the process caused by the reduction of cutting fluid supply and its relation with the tool wear and the surface integrity of the piece. The major problem observed in the tests was a difficulty for chips to flow through the drill flute, compromising their expulsion from the hole. After a careful analysis, a different machining strategy was adopted to solve the problem

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A retificação, processo final de usinagem de uma peça, utiliza fluidos de corte com a finalidade de lubrificação, refrigeração e remoção de cavacos. No entanto, esses fluidos são extremamente agressivos com o meio. Com o avanço tecnológico a tendência mundial é produzir peças cada vez mais sofisticadas, com elevado grau de tolerância geométrica, dimensional, com bom acabamento superficial, com baixo custo e, principalmente, sem causar danos ao meio. Para tanto, ao processo de retificação está intrínseca a reciclagem do fluido de corte, que se destaca pelo seu custo. Através da variação da velocidade de avanço no processo de retificação cilíndrica externa do aço ABNT D6, racionalizando a aplicação de dois fluidos de corte e usando um rebolo superabrasivo de CBN (nitreto de boro cúbico) com ligante vitrificado, avaliaram-se os parâmetros de saída da força tangencial de corte, emissão acústica, rugosidade, circularidade, desgaste da ferramenta, tensão residual e a integridade superficial através da microscopia eletrônica de varredura (MEV) dos corpos-de-prova. Com a análise do desempenho do fluido, do rebolo e da velocidade de mergulho, encontraram-se as melhores condições de usinagem propiciando a diminuição do volume de fluido de corte e a diminuição do tempo de usinagem, sem prejudicar os parâmetros geométricos e dimensionais, o acabamento superficial e a integridade superficial dos componentes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The use of ultra high strength steels (UHSS) in the automotive industry presents a significant opportunity for continued vehicle light-weighting, due to possible strength-to-weight improvements of three to four times that of conventional sheet steel grades. This performance benefit is achievable whist maintaining most of the advantages of low-cost mass-production associated with the cold stamping of sheet steel for automotive body components. However, the introduction of UHSS can result in significantly increased wear of the stamping tools, which is difficult to predict at the design stage and can lead to unexpected process failure during mass-production. Therefore, there is a need to be able to monitor and predict the onset of severe wear, such that the best course of condition-based maintenance can be scheduled and unscheduled stoppages due to tool wear eradicated. This paper describes a novel active monitoring system that is being developed by researchers at Deakin University, The Australian National University and Ford Motor Company, Asia Pacific and Africa. The aim of the active monitoring system is to detect the initial onset of a change of state, such as wear, through the measurement of variables such as punch force and audio signals. A semi-industrial stamping process, using a progressive die setup and high strength steel sheet with hardened tool steel tooling, is the experimental basis for the initial model and system development.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper investigates the temperature and contact pressure conditions in hot stamped channels of boron steel. Hot stamping has been used for many years to produce high strength structural auto-motive components. The high tensile strengths achievable by hot stamping is beneficial where the intrusion during a vehicle crash is not desirable – e.g. for the vehicle occupant compartment. How-ever, the high blank temperatures and high temperature cycling causes a large amount of wear in the tooling. These conditions have led to high tool failures and die maintenance costs. Thus, un-derstanding the main causes of wear behaviour in the hot stamping process is of high interest to hot stampers.
To this aim, a generic 2D thermo-mechanical finite element model of a hat-shaped crash formed hot stamped component was developed (based on the authors previous hot stamp model), and a modified phase transformation model based on Scheil’s additive principle has been applied. The model was created in the finite element software ABAQUS Standard V6.13, including convection and radiation when the component was transferred from furnace to the tool as well as the air-cooling process. A USDFLD subroutine was used to model the phase transformation and a HET-VAL subroutine was used to model the latent heat. Contact heat conductance was a function of the pressure.
The authors have used techniques from their previous work on tool wear estimation for cold stamping to estimate the contact pressure on the tooling, and the amount of sliding that occurs over the tooling, and the corresponding tooling temperature. This data provides a unique data set to understand the wear on the tooling, and will eventually lead to a model for estimating tooling life.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This research work presents a machinability study between wrought grade titanium and selective laser melted (SLM) titanium Ti-6Al-4V in a face turning operation, machined at cutting speeds between 60 and 180 m/min. Machinability characteristics such as tool wear, cutting forces, and machined surface quality were investigated. Coating delamination, adhesion, abrasion, attrition, and chipping wear mechanisms were dominant during machining of SLM Ti-6Al-4V. Maximum flank wear was found higher in machining SLM Ti-6Al-4V compared to wrought Ti-6Al-4V at all speeds. It was also found that high machining speeds lead to catastrophic failure of the cutting tool during machining of SLM Ti-6Al-4V. Cutting force was higher in machining SLM Ti-6Al-4V as compared to wrought Ti-6Al-4V for all cutting speeds due to its higher strength and hardness. Surface finish improved with the cutting speed despite the high tool wear observed at high machining speeds. Overall, machinability of SLM Ti-6Al-4V was found poor as compared to the wrought alloy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nitrocarburised H13 disks were tested in dry, sliding wear against a stationary ruby ball (pin). Three different 4 h nitrocarburising treatments were compared, using N2/NH3/CO2, N2/NH3/natural gas and N2/NH3 gas mixtures, resulting in compound layers of varying thickness, hardness, porosity and oxide morphology. During mild, oxidative wear, with the formation of abrasive wear debris, the most brittle and oxidised surfaces performed poorly. Polishing to a bright, reflective finish greatly reduced wear. However, the N2/NH3/CO2 sample also frequently maintained a 'very mild' wear regime, owing to the formation of a protective film between the wear surfaces, and resulting in a lowering of the friction coefficient. This treated surface was porous and covered in a complex layer of coarse oxide+epsi-carbonitride. Nitrocarburised samples and wear tracks were characterised by optical microscopy, SEM, atomic force microscopy and stylus profilometry.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose. We investigated structural differences in the fatty acid profiles of lipids extracted from ex vivo contact lenses by using gas chromatography mass spectrometry (GCMS). Two lens materials (balafilcon A or lotrafilcon A) were worn on a daily or continuous wear schedule for 30 and 7 days. Methods. Lipids from subject-worn lenses were extracted using 1:1 chloroform: methanol and transmethylated using 5% sulfuric acid in methanol. Fatty acid methyl esters (FAMEs) were collected using hexane and water, and analyzed by GCMS (Varian 3800 GC, Saturn 2000 MS). Results. The gas chromatograms of lens extracts that were worn on a continuous wear schedule showed two predominant peaks, C16:0 and C18:0, both of which are saturated fatty acids. This was the case for balafilcon A and lotrafilcon A lenses. However, the gas chromatograms of lens extracts that were worn on a daily wear schedule showed saturated (C16:0, C18:0) and unsaturated (C16:1 and C18:1) fatty acids. Conclusions. Unsaturated fatty acids are degraded during sleep in contact lenses. Degradation occurred independently of lens material or subject-to-subject variability in lipid deposition. The consequences of lipid degradation are the production of oxidative products, which may be linked to contact lens discomfort. © 2014 The Association for Research in Vision and Ophthalmology, Inc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study examines the effect of sliding speed and surface temperature on the wear behavior of an unlubricated mild steel-tool steel contact pair using the pin-on-disc test. The operating conditions and contact pair are of interest to the automotive sheet metal stamping industry and the broader metal forming community, where high contact pressures and moderate forming speeds can result in significant frictional heating and thus affect tool life. It will be shown that, while adhesive wear is dominant at the tool steel surface for all sliding speeds examined, the adhesive wear rate is very sensitive to sliding speed during slow speed conditions but relatively insensitive to sliding speed during higher speed conditions. These higher sliding speeds result in high frictional heating, however, the effect of increasing bulk temperature results in a transition from adhesive wear to material removal-dominated mechanisms. It is concluded that there is a distinct difference in the wear response for comparable surface temperature and bulk temperature conditions, at the low to moderate sliding speeds and temperatures examined in this study. The SEM and profilometry analysis show that the technique of increasing sliding speed to replicate bulk temperature conditions (or vice versa), may not result in equivalent wear rates and mechanisms.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

AISI H13 tool steel discs were pulsed plasma nitrided during different times at a constant temperature of 400 °C. Wear tests were performed in order to study the acting wear mechanisms. The samples were characterized by X-ray diffraction, scanning electron microscopy and hardness measurements. The results showed that longer nitriding times reduce the wear volumes. The friction coefficient was 0.20 ± 0.05 for all tested conditions and depends strongly on the presence of debris. After wear tests, the wear tracks were characterized by optical and scanning electron microscopy and the wear mechanisms were observed to change from low cycle fatigue or plastic shakedown to long cycle fatigue. These mechanisms were correlated to the microstructure and hardness of the nitrided layer.