984 resultados para Titanium Oxide, Microstructure Control, Superhydrophilicity
Resumo:
Shipboard studies during Ocean Drilling Program Leg 187 (Australian Antarctic Discordance, AAD) suggested that there was no discernible coincidence between the interpreted age of rocks recovered and the intensity of alteration observed. Samples from the oldest sites occupied appeared to exhibit the least overall effects of alteration, and the intensity of alteration varied from site to site. Previous investigations of low-temperature alteration in oceanic basement samples have been restricted by the myopic perspective provided by single drill holes or dredge collections. Combining core samples from Leg 187 and dredge samples from the AAD collection at Oregon State University (USA) offers the unique opportunity to investigate mineral and bulk chemical changes attending alteration of basalt over a range of ages from 0 to 28 Ma. Results of this research indicate that there is a general increase in the intensity of alteration as the basalts age and mosve off axis, but that this relationship is somewhat veiled by the dominating control on alteration intensity dictated by variations in permeability.
Resumo:
During ODP Leg 168, 10 sites were drilled across the eastern flank of the Juan de Fuca Ridge (JdFR), to examine the conditions of fluid-rock interaction in three distinct hydrothermal regimes (referred to as the Hydrothermal Transition (HT), Buried Basement (BB) and Rough Basement (RB) transects), extending over a ~120 km linear transect perpendicular to the spreading ridge. This was carried out in an attempt to constrain the conditions and processes that control the location, style and magnitude of low temperature (<150°C) fluid-rock interaction within this setting. This paper presents new data on the petrology, mineral chemistry and whole rock strontium and oxygen isotopic compositions of basalts from the eastern flank of the JdFR, in order to investigate the extent, style and sequence of low-temperature hydrothermal alteration and to establish how the hydrothermal regime evolved with time. Throughout the flank, a progressive sequence of low-temperature hydrothermal alteration has been identified, marked by changes in the dominant secondary mineral assemblage, changing from: chlorite+chlorite/smectite; to iron oyxhydroxide+celadonite; to saponite+/-pyrite; culminating at present with Ca- to CaMg(+/-Fe,Mn)-carbonate. The changes in secondary mineralogy have been used to infer a series of systematic shifts in the conditions of alteration that occurred as the basement moved off-axis and was progressively buried by sediment. In general, hydrothermal alteration of the uppermost oceanic crust commenced under open, oxidative conditions, with interaction between unmodified to slightly modified seawater and basaltic crust, to a regime in which circulation of a strongly modified seawater-derived fluid was more restricted, and alteration occurred under non-oxidative conditions. Across the flank, petrological observations and microprobe analyses indicate that the observed ranges in secondary mineral composition are directly related to changes in the geochemical and textural characteristics of the basement, as well as to interaction between fluids and phases from the four stages of alteration. This is suggestive of an increase in fluid-rock increased with time. Whole rock 87Sr/86Sr and d18O analyses of basalts from across the eastern flank of the JdFR reinforce petrological observations, with 87Sr/86Sr and d18O values slightly elevated above accepted pristine MORB values for this region. These results are consistent with an increase in the amount of fluid-rock interaction with time. Across the flank, enrichment in the 87Sr/86Sr and d18O relative to MORB, is influenced by a number of factors, including: local and regional variations in the crustal lithology and structure; the age of the crust; the extent of bulk rock alteration; and theoretically, the relative abundance of different isotopically-enriched secondary mineral phases in the crust.
Resumo:
We present results of an inorganic geochemical pore water and sediment study conducted on Quaternary sediments from the western Arctic Ocean. The sediment cores were recovered in 2008 from the southern Mendeleev Ridge during RV Polarstern Expedition ARK-XXIII/3. With respect to sediment sources and depositional processes, peaks in Ca/Al, Mg/Al, Sr/Al and Sr/Mg indicate enhanced input of both ice-rafted (mainly dolomite) and biogenic carbonate during deglacial warming phases. Distinct and repetitive brown layers enriched in Mn (oxyhydr)oxides occur mostly in association with these carbonate-rich intervals. For the first time, we show that the brown layers are also consistently enriched in scavenged trace metals Co, Cu, Mo and Ni. The bioturbation patterns of the brown layers, specifically well-defined brown burrows into the underlying sediments, support formation close to the sediment-water interface. The Mn and trace metal enrichments were probably initiated under warmer climate conditions. Both river runoff and melting sea ice delivered trace metals to the Arctic Ocean, but also enhanced seasonal productivity and organic matter export to the sea floor. As Mn (oxyhydr)oxides and scavenged trace metals were deposited at the sea floor, a co-occurring organic matter "pulse" triggered intense diagenetic Mn cycling at the sediment-water interface. These processes resulted in the formation of Mn and trace metal enrichments, but almost complete organic matter degradation. As warmer conditions ceased, reduced riverine runoff and/or a solid sea ice cover terminated the input of riverine trace metal and fresh organic matter, and greyish-yellowish sediments poor in Mn and trace metals were deposited. Oxygen depletion of Arctic bottom waters as potential cause for the lack of Mn enrichments during glacial intervals is highly improbable. While the original composition and texture of the brown layers resulted from specific climatic conditions (including transient Mn redox cycling at the sediment-water interface), pore water data show that early diagenetic Mn redistribution is still affecting the organic-poor sediments in several meters depth. Given persistent steady state diagenetic conditions, purely authigenic Mn-rich brown layers may form, while others may completely vanish. The degree of diagenetic Mn redistribution largely depends on the depositional environment within the Arctic Ocean, the availability of Mn and organic matter, and seems to be recorded by the Co/Mo ratios of single Mn-rich layers. We conclude that brown Arctic sediment layers are not necessarily synchronous features, and correlating them across different parts of the Arctic Ocean without additional age control is not recommended.
Resumo:
The CRP-2/2A core, drilled in western McMurdo Sound in October and November 1998, penetrated 624 m of Quaternary. Pliocene, lower Miocene, and Oligocene glacigenic sediments. The palaeoclimatic record of CRP-2/2A is examined using major element analyses of bulk core samples of fine grained sediments (mudstones and siltstones) and the Chemical Index of Alteration (CIA) of Nesbitt & Young (1982). The CIA is calculated from the relative abundances of AI, K, Ca, and Na oxides, and its magnitude increases as the effects of chemical weathering increase. However, changes in sediment provenance can also affect the CIA, and provenance changes are recorded by shifts in the Al2O3/TiO2 ratios and the Nb contents of these CRP-2/2A mudstones. Relatively low CIA values (40-50) occur throughout the CRP-2/2A sequence, whereas the Al2O3/TiO2 ratio decreases upsection. The major provenance change is an abrupt onset of McMurdo Volcanic Group detritus at ~300 mbsf and is best characterized by a rapid increase in Nb content in the sediments. This provenance shift is not evident in the CIA record, suggesting that a contribution from the Ferrar Dolerite to the older sediments was replaced by an input of McMurdo Volcanic Group material in the younger sediments. If this is true, then the relatively uniform CIA values indicate relatively consistent palaeoweathering intensities throughout the Oligocene and early Miocene in the areas that supplied sediment to CRP-2/2A.
Resumo:
Ocean Drilling Program (ODP) Leg 193 recovered core from the active PACMANUS hydrothermal field (eastern Manus Basin, Papua New Guinea) that provided an excellent opportunity to study mineralization related to a seafloor hydrothermal system hosted by felsic volcanic rocks. The purpose of this work is to provide a data set of mineral chemistry of the sulfide-oxide mineralization and associated gold occurrence in samples drilled at Sites 1188 and 1189. PACMANUS consists of five active vent sites, namely Rogers Ruins, Roman Ruins, Satanic Mills, Tsukushi, and Snowcap. In this work two sites were studied: Snowcap and Roman Ruins. Snowcap is situated in a water depth of 1670 meters below sea level [mbsl], covers a knoll of dacite-rhyodacite lava, and is characterized by low-temperature diffuse venting. Roman Ruin lies in a water depth of 1693-1710 mbsl, is 150 m across, and contains numerous large, active and inactive, columnar chimneys. Sulfide mineralogy at the Roman Ruins site is dominated by pyrite with lesser amounts of chalcopyrite, sphalerite, pyrrhotite, marcasite, and galena. Sulfide minerals are relatively rare at Snow Cap. These are dominated by pyrite with minor chalcopyrite and sphalerite and traces of pyrrhotite. Native gold has been found in a single sample from Hole 1189B (Roman Ruins). Oxide minerals are represented by Ti magnetite, magnetite, ilmenite, hercynite (Fe spinel), and less abundant Al-Mg rich chromite (average = 10.6 wt% Al2O3 and 5.8 wt% MgO), Fe-Ti oxides, and a single occurrence of pyrophanite (Mn Ti O3). Oxide mineralization is more developed at Snowcap, whereas sulfide minerals are more extensive and show better development at Roman Ruins. The mineralogy was obtained mainly by a detailed optical microscopy study. Oxide mineral identifications were confirmed by X-ray diffraction, and mineral chemistry was determined by electron probe microanalyses.
Resumo:
Diabases were recovered during Legs 137 and 140 at Hole 504B from depths between 1621.5 and 2000.4 meters below seafloor in the lower sheeted dike complex. The samples contain multiple generations of millimetric to centimetric veins. The orientation of the measured veins suggests that two main vein sets exist: one characterized by shallow dipping and the other by random trend. Thermal contraction during rock cooling is considered the main mechanism responsible for fracture formation. Vein infill is related to the circulation of hydrothermal fluids near the spreading axis. Some veins are surrounded by millimeter-sized alteration halos due to fluid percolation from the fractures through the host rock. Vein-filling minerals are essentially amphibole, chlorite, and zeolites. Amphibole composition is controlled by the microstructural site of the rock. Actinolite is the main amphibole occurring in the veins and also in the groundmass away from the halos. In the alteration halos, amphibole shows composition of actinolitic hornblende and Mg-hornblende. Late-stage tension gashes and interstitial spaces in some amphibole-bearing veins are filled with zeolites, suggesting that the veins likely suffered multiple opening stages that record the cooling history of the circulating fluids. Evidence of deformation recorded by the recovered samples seems to be restricted to veins that clearly represent elements of weakness of the rock. On the basis of vein geometry and microstructure we infer structural interpretations for the formation mechanism and for deformation of veins.
Resumo:
Objective: To evaluate the potential of 980-nm gallium aluminum arsenide (GaAlAs) and 1064-nm neodymium-doped yttrium aluminum garnet (Nd:YAG) lasers to reduce bacteria after irradiation of implant surfaces contaminated with Enterococcus faecalis and Porphyromonas gingivalis and on irradiated implant surface morphology. Background: Despite the frequency of implant success, some implant loss is related to peri-implantitis because of difficulty in eliminating the biofilm. Methods: Implants (3.75 x 13 mm) with machined surfaces, surfaces sand blasted with titanium oxide (TiO(2)), and sand-blasted and acid-etched surfaces were exposed to P. gingivalis and E. faecalis cultures and irradiated with 980-nm GaAlAs or 1064-nm Nd: YAG lasers. After laser treatments, the number of remaining colony-forming units and implant surface morphology were analyzed using scanning electron microscopy (SEM). Results: The Nd: YAG laser was able to promote a total contamination reduction on all implants irradiated. The results with the GaAlAs laser showed 100% bacteria reduction on the implants irradiated with 3 W. Irradiation with 2.5 W and 3 W achieved 100% of bacteria reduction on P. gingivalis-contaminated implants. Decontamination was not complete for the sand-blasted TiO(2) (78.6%) and acid-etched surfaces (49.4%) contaminated with E. faecalis and irradiated with 2.5 W. SEM showed no implant surface changes. Conclusion: The wavelengths used in this research provided bacteria reduction without damaging implant surfaces. New clinical research should be encouraged for the use of this technology in the treatment of peri-implantitis.