913 resultados para Timing
Resumo:
The national science project HIRFL-CSR has recently been officially accepted. As a cyclotron and synchotron complex, it puts some particularly high demands on the control system. There are hundreds of pieces of equipment that need to be synchronized. An integrated timing control system is built to meet these demands. The output rate and the accuracy of the controller are 16 bit/mu s. The accuracy of the time delay reaches 40 ns. The timing control system is based on a typical event distribution system, which adopts the new event generation and the distribution scheme. The scheme of the tuning control system with innovation points, the architecture and the implemented method are presented in the paper.
Resumo:
The aim of the present study was to assess the factors which may influence the timing of the introduction of solid food to infants. The design was a prospective cohort study by interview and postal questionnaire. Primiparous women (n 541) aged between 16 and 40 years were approached in the Forth Park Maternity Hospital, Fife, Scotland. Of these, 526 women agreed to participate and seventy-eight were used as subjects in the pilot study. At 12 weeks we interviewed 338 women of the study sample. The postal questionnaire was returned by 286 of 448 volunteers. At 12 weeks 133 of 338 mothers said that they had introduced solids. Those that said that they had introduced solids early (<12 weeks) were compared with those who had introduced solids late (>12 weeks) by bivariate and multiple regression analysis. Psychosocial factors influencing the decision were measured with the main outcome measure being the time of introduction of solid food. The early introduction of solids was found to be associated with: the opinions of the infant's maternal grandmother; living in a deprived area; personal disagreement with the advice to wait until the baby was 4 months; lack of encouragement from friends to wait until the baby was 4 months; being in receipt of free samples of manufactured food. Answers to open-ended questions indicated that the early introduction appeared to be influenced by the mothers’ perceptions of the baby's needs. Some of the factors influencing a woman's decision to introduce solids are amenable to change, and these could be targeted in educational interventions.
Resumo:
What brain mechanisms underlie autism and how do they give rise to autistic behavioral symptoms? This article describes a neural model, called the iSTART model, which proposes how cognitive, emotional, timing, and motor processes may interact together to create and perpetuate autistic symptoms. These model processes were originally developed to explain data concerning how the brain controls normal behaviors. The iSTART model shows how autistic behavioral symptoms may arise from prescribed breakdowns in these brain processes.
Resumo:
Temporal structure in skilled, fluent action exists at several nested levels. At the largest scale considered here, short sequences of actions that are planned collectively in prefrontal cortex appear to be queued for performance by a cyclic competitive process that operates in concert with a parallel analog representation that implicitly specifies the relative priority of elements of the sequence. At an intermediate scale, single acts, like reaching to grasp, depend on coordinated scaling of the rates at which many muscles shorten or lengthen in parallel. To ensure success of acts such as catching an approaching ball, such parallel rate scaling, which appears to be one function of the basal ganglia, must be coupled to perceptual variables, such as time-to-contact. At a fine scale, within each act, desired rate scaling can be realized only if precisely timed muscle activations first accelerate and then decelerate the limbs, to ensure that muscle length changes do not under- or over-shoot the amounts needed for the precise acts. Each context of action may require a much different timed muscle activation pattern than similar contexts. Because context differences that require different treatment cannot be known in advance, a formidable adaptive engine-the cerebellum-is needed to amplify differences within, and continuosly search, a vast parallel signal flow, in order to discover contextual "leading indicators" of when to generate distinctive parallel patterns of analog signals. From some parts of the cerebellum, such signals controls muscles. But a recent model shows how the lateral cerebellum, such signals control muscles. But a recent model shows how the lateral cerebellum may serve the competitive queuing system (in frontal cortex) as a repository of quickly accessed long-term sequence memories. Thus different parts of the cerebellum may use the same adaptive engine system design to serve the lowest and the highest of the three levels of temporal structure treated. If so, no one-to-one mapping exists between levels of temporal structure and major parts of the brain. Finally, recent data cast doubt on network-delay models of cerebellar adaptive timing.
Resumo:
1) A large body of behavioral data conceming animal and human gaits and gait transitions is simulated as emergent properties of a central pattern generator (CPG) model. The CPG model incorporates neurons obeying Hodgkin-Huxley type dynamics that interact via an on-center off-surround anatomy whose excitatory signals operate on a faster time scale than their inhibitory signals. A descending cornmand or arousal signal called a GO signal activates the gaits and controL their transitions. The GO signal and the CPG model are compared with neural data from globus pallidus and spinal cord, among other brain structures. 2) Data from human bimanual finger coordination tasks are simulated in which anti-phase oscillations at low frequencies spontaneously switch to in-phase oscillations at high frequencies, in-phase oscillations can be performed both at low and high frequencies, phase fluctuations occur at the anti-phase in-phase transition, and a "seagull effect" of larger errors occurs at intermediate phases. When driven by environmental patterns with intermediate phase relationships, the model's output exhibits a tendency to slip toward purely in-phase and anti-phase relationships as observed in humans subjects. 3) Quadruped vertebrate gaits, including the amble, the walk, all three pairwise gaits (trot, pace, and gallop) and the pronk are simulated. Rapid gait transitions are simulated in the order--walk, trot, pace, and gallop--that occurs in the cat, along with the observed increase in oscillation frequency. 4) Precise control of quadruped gait switching is achieved in the model by using GO-dependent modulation of the model's inhibitory interactions. This generates a different functional connectivity in a single CPG at different arousal levels. Such task-specific modulation of functional connectivity in neural pattern generators has been experimentally reported in invertebrates. Phase-dependent modulation of reflex gain has been observed in cats. A role for state-dependent modulation is herein predicted to occur in vertebrates for precise control of phase transitions from one gait to another. 5) The primary human gaits (the walk and the run) and elephant gaits (the amble and the walk) are sirnulated. Although these two gaits are qualitatively different, they both have the same limb order and may exhibit oscillation frequencies that overlap. The CPG model simulates the walk and the run by generating oscillations which exhibit the same phase relationships. but qualitatively different waveform shapes, at different GO signal levels. The fraction of each cycle that activity is above threshold quantitatively distinguishes the two gaits, much as the duty cycles of the feet are longer in the walk than in the run. 6) A key model properly concerns the ability of a single model CPG, that obeys a fixed set of opponent processing equations to generate both in-phase and anti-phase oscillations at different arousal levels. Phase transitions from either in-phase to anti-phase oscillations, or from anti-phase to in-phase oscillations, can occur in different parameter ranges, as the GO signal increases.
Resumo:
Advanced Research Projects Agency (ONR N00014-92-J-4015); National Science Foundation (IRI-90-24877); Office of Naval Research (N00014-91-J-1309)
Resumo:
This paper describes the design of a self~organizing, hierarchical neural network model of unsupervised serial learning. The model learns to recognize, store, and recall sequences of unitized patterns, using either short-term memory (STM) or both STM and long-term memory (LTM) mechanisms. Timing information is learned and recall {both from STM and from LTM) is performed with a learned rhythmical structure. The network, bearing similarities with ART (Carpenter & Grossberg 1987a), learns to map temporal sequences to unitized patterns, which makes it suitable for hierarchical operation. It is therefore capable of self-organizing codes for sequences of sequences. The capacity is only limited by the number of nodes provided. Selected simulation results are reported to illustrate system properties.
Resumo:
BACKGROUND: Primary care providers' suboptimal recognition of the severity of chronic kidney disease (CKD) may contribute to untimely referrals of patients with CKD to subspecialty care. It is unknown whether U.S. primary care physicians' use of estimated glomerular filtration rate (eGFR) rather than serum creatinine to estimate CKD severity could improve the timeliness of their subspecialty referral decisions. METHODS: We conducted a cross-sectional study of 154 United States primary care physicians to assess the effect of use of eGFR (versus creatinine) on the timing of their subspecialty referrals. Primary care physicians completed a questionnaire featuring questions regarding a hypothetical White or African American patient with progressing CKD. We asked primary care physicians to identify the serum creatinine and eGFR levels at which they would recommend patients like the hypothetical patient be referred for subspecialty evaluation. We assessed significant improvement in the timing [from eGFR < 30 to ≥ 30 mL/min/1.73m(2)) of their recommended referrals based on their use of creatinine versus eGFR. RESULTS: Primary care physicians recommended subspecialty referrals later (CKD more advanced) when using creatinine versus eGFR to assess kidney function [median eGFR 32 versus 55 mL/min/1.73m(2), p < 0.001]. Forty percent of primary care physicians significantly improved the timing of their referrals when basing their recommendations on eGFR. Improved timing occurred more frequently among primary care physicians practicing in academic (versus non-academic) practices or presented with White (versus African American) hypothetical patients [adjusted percentage(95% CI): 70% (45-87) versus 37% (reference) and 57% (39-73) versus 25% (reference), respectively, both p ≤ 0.01). CONCLUSIONS: Primary care physicians recommended subspecialty referrals earlier when using eGFR (versus creatinine) to assess kidney function. Enhanced use of eGFR by primary care physicians' could lead to more timely subspecialty care and improved clinical outcomes for patients with CKD.
Resumo:
The present study examined the impact of the developmental timing of trauma exposure on posttraumatic stress disorder (PTSD) symptoms and psychosocial functioning in a large sample of community-dwelling older adults (N = 1,995). Specifically, we investigated whether the negative consequences of exposure to traumatic events were greater for traumas experienced during childhood, adolescence, young adulthood, midlife, or older adulthood. Each of these developmental periods is characterized by age-related changes in cognitive and social processes that may influence psychological adjustment following trauma exposure. Results revealed that older adults who experienced their currently most distressing traumatic event during childhood exhibited more severe symptoms of PTSD and lower subjective happiness compared with older adults who experienced their most distressing trauma after the transition to adulthood. Similar findings emerged for measures of social support and coping ability. The differential effects of childhood compared with later life traumas were not fully explained by differences in cumulative trauma exposure or by differences in the objective and subjective characteristics of the events. Our findings demonstrate the enduring nature of traumatic events encountered early in the life course and underscore the importance of examining the developmental context of trauma exposure in investigations of the long-term consequences of traumatic experiences.