917 resultados para Time-shift estimation


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Knowledge of the time interval from death (post-mortem interval, PMI) has an enormous legal, criminological and psychological impact. Aiming to find an objective method for the determination of PMIs in forensic medicine, 1H-MR spectroscopy (1H-MRS) was used in a sheep head model to follow changes in brain metabolite concentrations after death. Following the characterization of newly observed metabolites (Ith et al., Magn. Reson. Med. 2002; 5: 915-920), the full set of acquired spectra was analyzed statistically to provide a quantitative estimation of PMIs with their respective confidence limits. In a first step, analytical mathematical functions are proposed to describe the time courses of 10 metabolites in the decomposing brain up to 3 weeks post-mortem. Subsequently, the inverted functions are used to predict PMIs based on the measured metabolite concentrations. Individual PMIs calculated from five different metabolites are then pooled, being weighted by their inverse variances. The predicted PMIs from all individual examinations in the sheep model are compared with known true times. In addition, four human cases with forensically estimated PMIs are compared with predictions based on single in situ MRS measurements. Interpretation of the individual sheep examinations gave a good correlation up to 250 h post-mortem, demonstrating that the predicted PMIs are consistent with the data used to generate the model. Comparison of the estimated PMIs with the forensically determined PMIs in the four human cases shows an adequate correlation. Current PMI estimations based on forensic methods typically suffer from uncertainties in the order of days to weeks without mathematically defined confidence information. In turn, a single 1H-MRS measurement of brain tissue in situ results in PMIs with defined and favorable confidence intervals in the range of hours, thus offering a quantitative and objective method for the determination of PMIs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nearly 22 million Americans operate as shift workers, and shift work has been linked to the development of cardiovascular disease (CVD). This study is aimed at identifying pivotal risk factors of CVD by assessing 24 hour ambulatory blood pressure, state anxiety levels and sleep patterns in 12 hour fixed shift workers. We hypothesized that night shift work would negatively affect blood pressure regulation, anxiety levels and sleep patterns. A total of 28 subjects (ages 22-60) were divided into two groups: 12 hour fixed night shift workers (n=15) and 12 hour fixed day shift workers (n=13). 24 hour ambulatory blood pressure measurements (Space Labs 90207) were taken twice: once during a regular work day and once on a non-work day. State anxiety levels were assessed on both test days using the Speilberger’s State Trait Anxiety Inventory. Total sleep time (TST) was determined using self recorded sleep diary. Night shift workers demonstrated increases in 24 hour systolic (122 ± 2 to 126 ± 2 mmHg, P=0.012); diastolic (75 ± 1 to 79 ± 2 mmHg, P=0.001); and mean arterial pressures (90 ± 2 to 94 ± 2mmHg, P<0.001) during work days compared to off days. In contrast, 24 hour blood pressures were similar during work and off days in day shift workers. Night shift workers reported less TST on work days versus off days (345 ± 16 vs. 552 ± 30 min; P<0.001), whereas day shift workers reported similar TST during work and off days (475 ± 16 minutes to 437 ± 20 minutes; P=0.231). State anxiety scores did not differ between the groups or testing days (time*group interaction P=0.248), suggesting increased 24 hour blood pressure during night shift work is related to decreased TST, not short term anxiety. Our findings suggest that fixed night shift work causes disruption of the normal sleep-wake cycle negatively affecting acute blood pressure regulation, which may increase the long-term risk for CVD.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis develops high performance real-time signal processing modules for direction of arrival (DOA) estimation for localization systems. It proposes highly parallel algorithms for performing subspace decomposition and polynomial rooting, which are otherwise traditionally implemented using sequential algorithms. The proposed algorithms address the emerging need for real-time localization for a wide range of applications. As the antenna array size increases, the complexity of signal processing algorithms increases, making it increasingly difficult to satisfy the real-time constraints. This thesis addresses real-time implementation by proposing parallel algorithms, that maintain considerable improvement over traditional algorithms, especially for systems with larger number of antenna array elements. Singular value decomposition (SVD) and polynomial rooting are two computationally complex steps and act as the bottleneck to achieving real-time performance. The proposed algorithms are suitable for implementation on field programmable gated arrays (FPGAs), single instruction multiple data (SIMD) hardware or application specific integrated chips (ASICs), which offer large number of processing elements that can be exploited for parallel processing. The designs proposed in this thesis are modular, easily expandable and easy to implement. Firstly, this thesis proposes a fast converging SVD algorithm. The proposed method reduces the number of iterations it takes to converge to correct singular values, thus achieving closer to real-time performance. A general algorithm and a modular system design are provided making it easy for designers to replicate and extend the design to larger matrix sizes. Moreover, the method is highly parallel, which can be exploited in various hardware platforms mentioned earlier. A fixed point implementation of proposed SVD algorithm is presented. The FPGA design is pipelined to the maximum extent to increase the maximum achievable frequency of operation. The system was developed with the objective of achieving high throughput. Various modern cores available in FPGAs were used to maximize the performance and details of these modules are presented in detail. Finally, a parallel polynomial rooting technique based on Newton’s method applicable exclusively to root-MUSIC polynomials is proposed. Unique characteristics of root-MUSIC polynomial’s complex dynamics were exploited to derive this polynomial rooting method. The technique exhibits parallelism and converges to the desired root within fixed number of iterations, making this suitable for polynomial rooting of large degree polynomials. We believe this is the first time that complex dynamics of root-MUSIC polynomial were analyzed to propose an algorithm. In all, the thesis addresses two major bottlenecks in a direction of arrival estimation system, by providing simple, high throughput, parallel algorithms.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Pulse wave velocity (PWV) is a surrogate of arterial stiffness and represents a non-invasive marker of cardiovascular risk. The non-invasive measurement of PWV requires tracking the arrival time of pressure pulses recorded in vivo, commonly referred to as pulse arrival time (PAT). In the state of the art, PAT is estimated by identifying a characteristic point of the pressure pulse waveform. This paper demonstrates that for ambulatory scenarios, where signal-to-noise ratios are below 10 dB, the performance in terms of repeatability of PAT measurements through characteristic points identification degrades drastically. Hence, we introduce a novel family of PAT estimators based on the parametric modeling of the anacrotic phase of a pressure pulse. In particular, we propose a parametric PAT estimator (TANH) that depicts high correlation with the Complior(R) characteristic point D1 (CC = 0.99), increases noise robustness and reduces by a five-fold factor the number of heartbeats required to obtain reliable PAT measurements.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND In 2007, leading international experts in the field of inflammatory bowel disease (IBD) recommended intravenous (IV) iron supplements over oral (PO) ones because of superior effectiveness and better tolerance. We aimed to determine the percentage of patients with IBD undergoing iron therapy and to assess the dynamics of iron prescription habits (IV versus PO). METHODS We analyzed anonymized data on patients with Crohn's disease and ulcerative colitis extracted from the Helsana database. Helsana is a Swiss health insurance company providing coverage for 18% of the Swiss population (1.2 million individuals). RESULTS In total, 629 patients with Crohn's disease (61% female) and 398 patients with ulcerative colitis (57% female) were identified; mean observation time was 31.8 months for Crohn's disease and 31.0 months for ulcerative colitis patients. Of all patients with IBD, 27.1% were prescribed iron (21.1% in males; 31.1% in females). Patients treated with steroids, immunomodulators, and/or anti-tumor necrosis factor drugs were more frequently treated with iron supplements when compared with those not treated with any medications (35.0% versus 20.9%, odds ratio, 1.94; P < 0.001). The frequency of IV iron prescriptions increased significantly from 2006 to 2009 for both genders (males: from 2.6% to 10.1%, odds ratio = 3.84, P < 0.001; females: from 5.3% to 12.1%, odds ratio = 2.26, P = 0.002), whereas the percentage of PO iron prescriptions did not change. CONCLUSIONS Twenty-seven percent of patients with IBD were treated with iron supplements. Iron supplements administered IV were prescribed more frequently over time. These prescription habits are consistent with the implementation of guidelines on the management of iron deficiency in IBD.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND Although surgery represents the cornerstone treatment of endometrial cancer at initial diagnosis, scarce data are available in recurrent setting. The purpose of this study was to review the outcome of surgery in these patients. METHODS Medical records of all patients undergoing surgery for recurrent endometrial cancer at NCI Milano between January 2003 and January 2014 were reviewed. Survival was determined from the time of surgery for recurrence to last follow-up. Survival was estimated using Kaplan-Meier methods. Differences in survival were analyzed using the log-rank test. The Fisher's exact test was used to compare optimal versus suboptimal cytoreduction against possible predictive factors. RESULTS Sixty-four patients were identified. Median age was 66 years. Recurrences were multiple in 38 % of the cases. Optimal cytoreduction was achieved in 65.6 %. Median OR time was 165 min, median postoperative hemoglobin drop was 2.4 g/dl, and median length hospital stay was 5.5 days. Eleven patients developed postoperative complications, but only four required surgical management. Estimated 5-year progression-free survival (PFS) was 42 and 19 % in optimally and suboptimally cytoreduced patients, respectively. At multivariate analysis, only residual disease was associated with PFS. Estimated 5-year overall survival (OS) was 60 and 30 % in optimally and suboptimally cytoreduced patients, respectively. At multivariate analysis, residual disease and histotype were associated with OS. At multivariate analysis, only performance status was associated with optimal cytoreduction. CONCLUSIONS Secondary cytoreduction in endometrial cancer is associated with long PFS and OS. The only factors associated with improved long-term outcome are the absence of residual disease at the end of surgical resection and histotype.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Predicting statically the running time of programs has many applications ranging from task scheduling in parallel execution to proving the ability of a program to meet strict time constraints. A starting point in order to attack this problem is to infer the computational complexity of such programs (or fragments thereof). This is one of the reasons why the development of static analysis techniques for inferring cost-related properties of programs (usually upper and/or lower bounds of actual costs) has received considerable attention.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Effective static analyses have been proposed which infer bounds on the number of resolutions or reductions. These have the advantage of being independent from the platform on which the programs are executed and have been shown to be useful in a number of applications, such as granularity control in parallel execution. On the other hand, in distributed computation scenarios where platforms with different capabilities come into play, it is necessary to express costs in metrics that include the characteristics of the platform. In particular, it is specially interesting to be able to infer upper and lower bounds on actual execution times. With this objective in mind, we propose an approach which combines compile-time analysis for cost bounds with a one-time profiling of the platform in order to determine the valúes of certain parameters for a given platform. These parameters calíbrate a cost model which, from then on, is able to compute statically time bound functions for procedures and to predict with a significant degree of accuracy the execution times of such procedures in the given platform. The approach has been implemented and integrated in the CiaoPP system.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The employment of nonlinear analysis techniques for automatic voice pathology detection systems has gained popularity due to the ability of such techniques for dealing with the underlying nonlinear phenomena. On this respect, characterization using nonlinear analysis typically employs the classical Correlation Dimension and the largest Lyapunov Exponent, as well as some regularity quantifiers computing the system predictability. Mostly, regularity features highly depend on a correct choosing of some parameters. One of those, the delay time �, is usually fixed to be 1. Nonetheless, it has been stated that a unity � can not avoid linear correlation of the time series and hence, may not correctly capture system nonlinearities. Therefore, present work studies the influence of the � parameter on the estimation of regularity features. Three � estimations are considered: the baseline value 1; a � based on the Average Automutual Information criterion; and � chosen from the embedding window. Testing results obtained for pathological voice suggest that an improved accuracy might be obtained by using a � value different from 1, as it accounts for the underlying nonlinearities of the voice signal.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In Operational Modal Analysis of structures we often have multiple time history records of vibrations measured at different time instants. This work presents a procedure for estimating the modal parameters of the structure processing all the records, that is, using all available information to obtain a single estimate of the modal parameters. The method uses Maximum Likelihood Estimation and the Expectation Maximization algorithm. Finally, it has been applied to various problems for both simulated and real structures and the results show the advantage of the joint analysis proposed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work is addressed the topic of estimation of velocity and acceleration from digital position data. It is presented a review of several classic methods and implemented with real position data from a low cost digital sensor of a hydraulic linear actuator. The results are analyzed and compared. It is shown that static methods have a limited bandwidth application, and that the performance of some methods may be enhanced by adapting its parameters according to the current state.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Information of crop phenology is essential for evaluating crop productivity. In a previous work, we determined phenological stages with remote sensing data using a dynamic system framework and an extended Kalman filter (EKF) approach. In this paper, we demonstrate that the particle filter is a more reliable method to infer any phenological stage compared to the EKF. The improvements achieved with this approach are discussed. In addition, this methodology enables the estimation of key cultivation dates, thus providing a practical product for many applications. The dates of some important stages, as the sowing date and the day when the crop reaches the panicle initiation stage, have been chosen to show the potential of this technique.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper deals with the estimation of a time-invariant channel spectrum from its own nonuniform samples, assuming there is a bound on the channel’s delay spread. Except for this last assumption, this is the basic estimation problem in systems providing channel spectral samples. However, as shown in the paper, the delay spread bound leads us to view the spectrum as a band-limited signal, rather than the Fourier transform of a tapped delay line (TDL). Using this alternative model, a linear estimator is presented that approximately minimizes the expected root-mean-square (RMS) error for a deterministic channel. Its main advantage over the TDL is that it takes into account the spectrum’s smoothness (time width), thus providing a performance improvement. The proposed estimator is compared numerically with the maximum likelihood (ML) estimator based on a TDL model in pilot-assisted channel estimation (PACE) for OFDM.