966 resultados para Time complexity
Resumo:
Depth-averaged velocities and unit discharges within a 30 km reach of one of the world's largest rivers, the Rio Parana, Argentina, were simulated using three hydrodynamic models with different process representations: a reduced complexity (RC) model that neglects most of the physics governing fluid flow, a two-dimensional model based on the shallow water equations, and a three-dimensional model based on the Reynolds-averaged Navier-Stokes equations. Row characteristics simulated using all three models were compared with data obtained by acoustic Doppler current profiler surveys at four cross sections within the study reach. This analysis demonstrates that, surprisingly, the performance of the RC model is generally equal to, and in some instances better than, that of the physics based models in terms of the statistical agreement between simulated and measured flow properties. In addition, in contrast to previous applications of RC models, the present study demonstrates that the RC model can successfully predict measured flow velocities. The strong performance of the RC model reflects, in part, the simplicity of the depth-averaged mean flow patterns within the study reach and the dominant role of channel-scale topographic features in controlling the flow dynamics. Moreover, the very low water surface slopes that typify large sand-bed rivers enable flow depths to be estimated reliably in the RC model using a simple fixed-lid planar water surface approximation. This approach overcomes a major problem encountered in the application of RC models in environments characterised by shallow flows and steep bed gradients. The RC model is four orders of magnitude faster than the physics based models when performing steady-state hydrodynamic calculations. However, the iterative nature of the RC model calculations implies a reduction in computational efficiency relative to some other RC models. A further implication of this is that, if used to simulate channel morphodynamics, the present RC model may offer only a marginal advantage in terms of computational efficiency over approaches based on the shallow water equations. These observations illustrate the trade off between model realism and efficiency that is a key consideration in RC modelling. Moreover, this outcome highlights a need to rethink the use of RC morphodynamic models in fluvial geomorphology and to move away from existing grid-based approaches, such as the popular cellular automata (CA) models, that remain essentially reductionist in nature. In the case of the world's largest sand-bed rivers, this might be achieved by implementing the RC model outlined here as one element within a hierarchical modelling framework that would enable computationally efficient simulation of the morphodynamics of large rivers over millennial time scales. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Low-complexity regions (LCRs) in proteins are tracts that are highly enriched in one or a few aminoacids. Given their high abundance, and their capacity to expand in relatively short periods of time through replication slippage, they can greatly contribute to increase protein sequence space and generate novel protein functions. However, little is known about the global impact of LCRs on protein evolution. We have traced back the evolutionary history of 2,802 LCRs from a large set of homologous protein families from H.sapiens, M.musculus, G.gallus, D.rerio and C.intestinalis. Transcriptional factors and other regulatory functions are overrepresented in proteins containing LCRs. We have found that the gain of novel LCRs is frequently associated with repeat expansion whereas the loss of LCRs is more often due to accumulation of amino acid substitutions as opposed to deletions. This dichotomy results in net protein sequence gain over time. We have detected a significant increase in the rate of accumulation of novel LCRs in the ancestral Amniota and mammalian branches, and a reduction in the chicken branch. Alanine and/or glycine-rich LCRs are overrepresented in recently emerged LCR sets from all branches, suggesting that their expansion is better tolerated than for other LCR types. LCRs enriched in positively charged amino acids show the contrary pattern, indicating an important effect of purifying selection in their maintenance. We have performed the first large-scale study on the evolutionary dynamics of LCRs in protein families. The study has shown that the composition of an LCR is an important determinant of its evolutionary pattern.
Resumo:
In this paper, the theory of hidden Markov models (HMM) isapplied to the problem of blind (without training sequences) channel estimationand data detection. Within a HMM framework, the Baum–Welch(BW) identification algorithm is frequently used to find out maximum-likelihood (ML) estimates of the corresponding model. However, such a procedureassumes the model (i.e., the channel response) to be static throughoutthe observation sequence. By means of introducing a parametric model fortime-varying channel responses, a version of the algorithm, which is moreappropriate for mobile channels [time-dependent Baum-Welch (TDBW)] isderived. Aiming to compare algorithm behavior, a set of computer simulationsfor a GSM scenario is provided. Results indicate that, in comparisonto other Baum–Welch (BW) versions of the algorithm, the TDBW approachattains a remarkable enhancement in performance. For that purpose, onlya moderate increase in computational complexity is needed.
Resumo:
Monimutkaisen tietokonejärjestelmän suorituskykyoptimointi edellyttää järjestelmän ajonaikaisen käyttäytymisen ymmärtämistä. Ohjelmiston koon ja monimutkaisuuden kasvun myötä suorituskykyoptimointi tulee yhä tärkeämmäksi osaksi tuotekehitysprosessia. Tehokkaampien prosessorien käytön myötä myös energiankulutus ja lämmöntuotto ovat nousseet yhä suuremmiksi ongelmiksi, erityisesti pienissä, kannettavissa laitteissa. Lämpö- ja energiaongelmien rajoittamiseksi on kehitetty suorituskyvyn skaalausmenetelmiä, jotka edelleen lisäävät järjestelmän kompleksisuutta ja suorituskykyoptimoinnin tarvetta. Tässä työssä kehitettiin visualisointi- ja analysointityökalu ajonaikaisen käyttäytymisen ymmärtämisen helpottamiseksi. Lisäksi kehitettiin suorituskyvyn mitta, joka mahdollistaa erilaisten skaalausmenetelmien vertailun ja arvioimisen suoritusympäristöstä riippumatta, perustuen joko suoritustallenteen tai teoreettiseen analyysiin. Työkalu esittää ajonaikaisesti kerätyn tallenteen helposti ymmärrettävällä tavalla. Se näyttää mm. prosessit, prosessorikuorman, skaalausmenetelmien toiminnan sekä energiankulutuksen kolmiulotteista grafiikkaa käyttäen. Työkalu tuottaa myös käyttäjän valitsemasta osasta suorituskuvaa numeerista tietoa, joka sisältää useita oleellisia suorituskykyarvoja ja tilastotietoa. Työkalun sovellettavuutta tarkasteltiin todellisesta laitteesta saatua suoritustallennetta sekä suorituskyvyn skaalauksen simulointia analysoimalla. Skaalausmekanismin parametrien vaikutus simuloidun laitteen suorituskykyyn analysoitiin.
Resumo:
The increase of publicly available sequencing data has allowed for rapid progress in our understanding of genome composition. As new information becomes available we should constantly be updating and reanalyzing existing and newly acquired data. In this report we focus on transposable elements (TEs) which make up a significant portion of nearly all sequenced genomes. Our ability to accurately identify and classify these sequences is critical to understanding their impact on host genomes. At the same time, as we demonstrate in this report, problems with existing classification schemes have led to significant misunderstandings of the evolution of both TE sequences and their host genomes. In a pioneering publication Finnegan (1989) proposed classifying all TE sequences into two classes based on transposition mechanisms and structural features: the retrotransposons (class I) and the DNA transposons (class II). We have retraced how ideas regarding TE classification and annotation in both prokaryotic and eukaryotic scientific communities have changed over time. This has led us to observe that: (1) a number of TEs have convergent structural features and/or transposition mechanisms that have led to misleading conclusions regarding their classification, (2) the evolution of TEs is similar to that of viruses by having several unrelated origins, (3) there might be at least 8 classes and 12 orders of TEs including 10 novel orders. In an effort to address these classification issues we propose: (1) the outline of a universal TE classification, (2) a set of methods and classification rules that could be used by all scientific communities involved in the study of TEs, and (3) a 5-year schedule for the establishment of an International Committee for Taxonomy of Transposable Elements (ICTTE).
Resumo:
Maximum entropy modeling (Maxent) is a widely used algorithm for predicting species distributions across space and time. Properly assessing the uncertainty in such predictions is non-trivial and requires validation with independent datasets. Notably, model complexity (number of model parameters) remains a major concern in relation to overfitting and, hence, transferability of Maxent models. An emerging approach is to validate the cross-temporal transferability of model predictions using paleoecological data. In this study, we assess the effect of model complexity on the performance of Maxent projections across time using two European plant species (Alnus giutinosa (L.) Gaertn. and Corylus avellana L) with an extensive late Quaternary fossil record in Spain as a study case. We fit 110 models with different levels of complexity under present time and tested model performance using AUC (area under the receiver operating characteristic curve) and AlCc (corrected Akaike Information Criterion) through the standard procedure of randomly partitioning current occurrence data. We then compared these results to an independent validation by projecting the models to mid-Holocene (6000 years before present) climatic conditions in Spain to assess their ability to predict fossil pollen presence-absence and abundance. We find that calibrating Maxent models with default settings result in the generation of overly complex models. While model performance increased with model complexity when predicting current distributions, it was higher with intermediate complexity when predicting mid-Holocene distributions. Hence, models of intermediate complexity resulted in the best trade-off to predict species distributions across time. Reliable temporal model transferability is especially relevant for forecasting species distributions under future climate change. Consequently, species-specific model tuning should be used to find the best modeling settings to control for complexity, notably with paleoecological data to independently validate model projections. For cross-temporal projections of species distributions for which paleoecological data is not available, models of intermediate complexity should be selected.
Resumo:
CONTEXT: Complex steroid disorders such as P450 oxidoreductase deficiency or apparent cortisone reductase deficiency may be recognized by steroid profiling using chromatographic mass spectrometric methods. These methods are highly specific and sensitive, and provide a complete spectrum of steroid metabolites in a single measurement of one sample which makes them superior to immunoassays. The steroid metabolome during the fetal-neonatal transition is characterized by (a) the metabolites of the fetal-placental unit at birth, (b) the fetal adrenal androgens until its involution 3-6 months postnatally, and (c) the steroid metabolites produced by the developing endocrine organs. All these developmental events change the steroid metabolome in an age- and sex-dependent manner during the first year of life. OBJECTIVE: The aim of this study was to provide normative values for the urinary steroid metabolome of healthy newborns at short time intervals in the first year of life. METHODS: We conducted a prospective, longitudinal study to measure 67 urinary steroid metabolites in 21 male and 22 female term healthy newborn infants at 13 time-points from week 1 to week 49 of life. Urine samples were collected from newborn infants before discharge from hospital and from healthy infants at home. Steroid metabolites were measured by gas chromatography-mass spectrometry (GC-MS) and steroid concentrations corrected for urinary creatinine excretion were calculated. RESULTS: 61 steroids showed age and 15 steroids sex specificity. Highest urinary steroid concentrations were found in both sexes for progesterone derivatives, in particular 20α-DH-5α-DH-progesterone, and for highly polar 6α-hydroxylated glucocorticoids. The steroids peaked at week 3 and decreased by ∼80% at week 25 in both sexes. The decline of progestins, androgens and estrogens was more pronounced than of glucocorticoids whereas the excretion of corticosterone and its metabolites and of mineralocorticoids remained constant during the first year of life. CONCLUSION: The urinary steroid profile changes dramatically during the first year of life and correlates with the physiologic developmental changes during the fetal-neonatal transition. Thus detailed normative data during this time period permit the use of steroid profiling as a powerful diagnostic tool.
Resumo:
Climate change affects the rate of insect invasions as well as the abundance, distribution and impacts of such invasions on a global scale. Among the principal analytical approaches to predicting and understanding future impacts of biological invasions are Species Distribution Models (SDMs), typically in the form of correlative Ecological Niche Models (ENMs). An underlying assumption of ENMs is that species-environment relationships remain preserved during extrapolations in space and time, although this is widely criticised. The semi-mechanistic modelling platform, CLIMEX, employs a top-down approach using species ecophysiological traits and is able to avoid some of the issues of extrapolation, making it highly applicable to investigating biological invasions in the context of climate change. The tephritid fruit flies (Diptera: Tephritidae) comprise some of the most successful invasive species and serious economic pests around the world. Here we project 12 tephritid species CLIMEX models into future climate scenarios to examine overall patterns of climate suitability and forecast potential distributional changes for this group. We further compare the aggregate response of the group against species-specific responses. We then consider additional drivers of biological invasions to examine how invasion potential is influenced by climate, fruit production and trade indices. Considering the group of tephritid species examined here, climate change is predicted to decrease global climate suitability and to shift the cumulative distribution poleward. However, when examining species-level patterns, the predominant directionality of range shifts for 11 of the 12 species is eastward. Most notably, management will need to consider regional changes in fruit fly species invasion potential where high fruit production, trade indices and predicted distributions of these flies overlap.
Resumo:
As a result of the growing interest in studying employee well-being as a complex process that portrays high levels of within-individual variability and evolves over time, this present study considers the experience of flow in the workplace from a nonlinear dynamical systems approach. Our goal is to offer new ways to move the study of employee well-being beyond linear approaches. With nonlinear dynamical systems theory as the backdrop, we conducted a longitudinal study using the experience sampling method and qualitative semi-structured interviews for data collection; 6981 registers of data were collected from a sample of 60 employees. The obtained time series were analyzed using various techniques derived from the nonlinear dynamical systems theory (i.e., recurrence analysis and surrogate data) and multiple correspondence analyses. The results revealed the following: 1) flow in the workplace presents a high degree of within-individual variability; this variability is characterized as chaotic for most of the cases (75%); 2) high levels of flow are associated with chaos; and 3) different dimensions of the flow experience (e.g., merging of action and awareness) as well as individual (e.g., age) and job characteristics (e.g., job tenure) are associated with the emergence of different dynamic patterns (chaotic, linear and random).
Resumo:
Physical exercise is associated with parasympathetic withdrawal and increased sympathetic activity resulting in heart rate increase. The rate of post-exercise cardiodeceleration is used as an index of cardiac vagal reactivation. Analysis of heart rate variability (HRV) and complexity can provide useful information about autonomic control of the cardiovascular system. The aim of the present study was to ascertain the association between heart rate decrease after exercise and HRV parameters. Heart rate was monitored in 17 healthy male subjects (mean age: 20 years) during the pre-exercise phase (25 min supine, 5 min standing), during exercise (8 min of the step test with an ascending frequency corresponding to 70% of individual maximal power output) and during the recovery phase (30 min supine). HRV analysis in the time and frequency domains and evaluation of a newly developed complexity measure - sample entropy - were performed on selected segments of heart rate time series. During recovery, heart rate decreased gradually but did not attain pre-exercise values within 30 min after exercise. On the other hand, HRV gradually increased, but did not regain rest values during the study period. Heart rate complexity was slightly reduced after exercise and attained rest values after 30-min recovery. The rate of cardiodeceleration did not correlate with pre-exercise HRV parameters, but positively correlated with HRV measures and sample entropy obtained from the early phases of recovery. In conclusion, the cardiodeceleration rate is independent of HRV measures during the rest period but it is related to early post-exercise recovery HRV measures, confirming a parasympathetic contribution to this phase.
Resumo:
There is evidence that the left hemisphere is more competent for motor control than the right hemisphere. This study investigated whether this hemispheric asymmetry is expressed in the latency/duration of sequential responses performed by the left and/or right hands. Thirty-two right-handed young adults (16 males, 16 females; 18-25 years old) were tested in a simple or choice reaction time task. They responded to a left and/or right visual target by moving their left and/or right middle fingers between two keys on each side of the midline. Right hand reaction time did not differ from left hand reaction time. Submovement times were longer for the right hand than the left hand when the response was bilateral. Pause times were shorter for the right hand than the left hand, both when the responses were unilateral or bilateral. Reaction time results indicate that the putatively more efficient response preparation by the left hemisphere motor mechanisms is not expressed behaviorally. Submovement time and pause time results indicate that the putatively more efficient response execution by the left hemisphere motor mechanisms is expressed behaviorally. In the case of the submovements, the less efficient motor control of the left hand would be compensated by a more intense attention to this hand.
Resumo:
The effects of a complexly worded counterattitudinal appeal on laypeople's attitudes toward a legal issue were examined, using the Elaboration Likelihood Model (ELM) of persuasion as a theoretical framework. This model states that persuasion can result from the elaboration and scrutiny of the message arguments (i.e., central route processing), or can result from less cognitively effortful strategies, such as relying on source characteristics as a cue to message validity (i.e., peripheral route processing). One hundred and sixty-seven undergraduates (85 men and 81 women) listened to eitller a low status or high status source deliver a counterattitudinal speech on a legal issue. The speech was designed to contain strong or weak arguments. These arguments were 'worded in a simple and, therefore, easy to comprehend manner, or in a complex and, therefore, difficult to comprehend manner. Thus, there were three experimental manipulations: argument comprehensibility (easy to comprehend vs. difficult to comprehend), argumel11 strength (weak vs. strong), and source status (low vs. high). After listening to tIle speec.J] participants completed a measure 'of their attitude toward the legal issue, a thought listil1g task, an argument recall task,manipulation checks, measures of motivation to process the message, and measures of mood. As a result of the failure of the argument strength manipulation, only the effects of the comprehel1sibility and source status manipulations were tested. There was, however, some evidence of more central route processing in the easy comprehension condition than in the difficult comprehension condition, as predicted. Significant correlations were found between attitude and favourable and unfavourable thoughts about the legal issue with easy to comprehend arguments; whereas, there was a correlation only between attitude and favourable thoughts 11 toward the issue with difficult to comprehend arguments, suggesting, perhaps, that central route processing, \vhich involves argument scrutiny and elaboration, occurred under conditions of easy comprehension to a greater extent than under conditions of difficult comprehension. The results also revealed, among other findings, several significant effects of gender. Men had more favourable attitudes toward the legal issue than did women, men recalled more arguments from the speech than did women, men were less frustrated while listening to the speech than were ,vomen, and men put more effort into thinking about the message arguments than did women. When the arguments were difficult to comprehend, men had more favourable thoughts and fewer unfavourable thoughts about the legal issue than did women. Men and women may have had different affective responses to the issue of plea bargaining (with women responding more negatively than men), especially in light of a local and controversial plea bargain that occurred around the time of this study. Such pre-existing gender differences may have led to tIle lower frustration, the greater effort, the greater recall, and more positive attitudes for men than for WOlnen. Results· from this study suggest that current cognitive models of persuasion may not be very applicable to controversial issues which elicit strong emotional responses. Finally, these data indicate that affective responses, the controversial and emotional nature ofthe issue, gender and other individual differences are important considerations when experts are attempting to persuade laypeople toward a counterattitudinal position.
Resumo:
Faute de droits d'auteurs pour les captures d'écrans, mon document ne contient pas d'images. Si vous voudriez consulter ma thèse avec les images, veuillez me contacter.
Resumo:
n this paper, a time series complexity analysis of dense array electroencephalogram signals is carried out using the recently introduced Sample Entropy (SampEn) measure. This statistic quantifies the regularity in signals recorded from systems that can vary from the purely deterministic to purely stochastic realm. The present analysis is conducted with an objective of gaining insight into complexity variations related to changing brain dynamics for EEG recorded from the three cases of passive, eyes closed condition, a mental arithmetic task and the same mental task carried out after a physical exertion task. It is observed that the statistic is a robust quantifier of complexity suited for short physiological signals such as the EEG and it points to the specific brain regions that exhibit lowered complexity during the mental task state as compared to a passive, relaxed state. In the case of mental tasks carried out before and after the performance of a physical exercise, the statistic can detect the variations brought in by the intermediate fatigue inducing exercise period. This enhances its utility in detecting subtle changes in the brain state that can find wider scope for applications in EEG based brain studies.
Resumo:
Sonar signal processing comprises of a large number of signal processing algorithms for implementing functions such as Target Detection, Localisation, Classification, Tracking and Parameter estimation. Current implementations of these functions rely on conventional techniques largely based on Fourier Techniques, primarily meant for stationary signals. Interestingly enough, the signals received by the sonar sensors are often non-stationary and hence processing methods capable of handling the non-stationarity will definitely fare better than Fourier transform based methods.Time-frequency methods(TFMs) are known as one of the best DSP tools for nonstationary signal processing, with which one can analyze signals in time and frequency domains simultaneously. But, other than STFT, TFMs have been largely limited to academic research because of the complexity of the algorithms and the limitations of computing power. With the availability of fast processors, many applications of TFMs have been reported in the fields of speech and image processing and biomedical applications, but not many in sonar processing. A structured effort, to fill these lacunae by exploring the potential of TFMs in sonar applications, is the net outcome of this thesis. To this end, four TFMs have been explored in detail viz. Wavelet Transform, Fractional Fourier Transfonn, Wigner Ville Distribution and Ambiguity Function and their potential in implementing five major sonar functions has been demonstrated with very promising results. What has been conclusively brought out in this thesis, is that there is no "one best TFM" for all applications, but there is "one best TFM" for each application. Accordingly, the TFM has to be adapted and tailored in many ways in order to develop specific algorithms for each of the applications.