999 resultados para Thyroid tumor
Resumo:
Background: In women with breast cancer submitted to neoadjuvant chemotherapy based in doxorubicin, tumor expression of groups of three genes (PRSS11, MTSS1, CLPTM1 and PRSS11, MTSS1, SMYD2) have classified them as responsive or resistant. We have investigated whether expression of these trios of genes could predict mammary carcinoma response in dogs and whether tumor slices, which maintain epithelial-mesenchymal interactions, could be used to evaluate drug response in vitro. Methods: Tumors from 38 dogs were sliced and cultured with or without doxorubicin 1 mu M for 24 h. Tumor cells were counted by two observers to establish a percentage variation in cell number, between slices. Based on these results, a reduction in cell number between treated and control samples >= 21.7%, arbitrarily classified samples, as drug responsive. Tumor expression of PRSS11, MTSS1, CLPTM1 and SMYD2, was evaluated by real time PCR. Relative expression results were then transformed to their natural logarithm values, which were spatially disposed according to the expression of trios of genes, comprising PRSS11, MTSS1, CLPTM1 and PRSS11, MTSS1, SMYD2. Fisher linear discrimination test was used to generate a separation plane between responsive and non-responsive tumors. Results: Culture of tumor slices for 24 h was feasible. Nine samples were considered responsive and 29 non-responsive to doxorubicin, considering the pre-established cut-off value of cell number reduction = 21.7%, between doxorubicin treated and control samples. Relative gene expression was evaluated and tumor samples were then spatially distributed according to the expression of the trios of genes: PRSS11, MTSS1, CLPTM1 and PRSS11, MTSS1, SMYD2. A separation plane was generated. However, no clear separation between responsive and non-responsive samples could be observed. Conclusion: Three-dimensional distribution of samples according to the expression of the trios of genes PRSS11, MTSS1, CLPTM1 and PRSS11, MTSS1, SMYD2 could not predict doxorubicin in vitro responsiveness. Short term culture of mammary gland cancer slices may be an interesting model to evaluate chemotherapy activity.
Resumo:
TH-induced cardiac hypertrophy in vivo is accompanied by increased cardiac Transforming Growth Factor-beta 1 (TGF-beta 1) levels, which is mediated by Angiotensin II type 1 receptors (AT1R) and type 2 receptors (AT2R). However, the possible involvement of this factor in TH-induced cardiac hypertrophy is unknown. In this study we evaluated whether TH is able to modulate TGF-beta 1 in isolated cardiac, as well as the possible contribution of AT1R and AT2R in this response. The cardiac fibroblasts treated with T(3) did not show alteration on TGF-beta 1 expression. However, cardiomyocytes treated with T(3) presented an increase in TGF-beta 1 expression, as well as an increase in protein synthesis. The AT1R blockade prevented the T(3)-induced cardiomyocyte hypertrophy, while the AT2R blockage attenuated this response. The T(3)-induced increase on TGF-beta 1 expression in cardiomyocytes was not changed by the use of AT1R and AT2R blockers. These results indicate that Angiotensin II receptors are not implicated in T(3)-induced increase on TGF-beta expression and suggest that the trophic effects exerted by T(3) on cardiomyocytes are not dependent on the higher TGF-beta 1 levels, since the AT1R and AT2R blockers were able to attenuate the T(3)-induced cardiomyocyte hypertrophy but were not able to attenuate the increase on TGF-beta 1 levels promoted by T(3).
Resumo:
Background: Papillary thyroid carcinoma (PTC) is frequently associated with a RET gene rearrangement that generates a RET/PTC oncogene. RET/PTC is a fusion of the tyrosine kinase domain of RET to the 50 portion of a different gene. This fusion results in a constitutively active MAPK pathway, which plays a key role in PTC development. The RET/PTC3 fusion is primarily associated with radiation-related PTC. Epidemiological studies show a lower incidence of PTC in radiation-exposed regions that are associated with an iodine-rich diet. Since the influence of excess iodine on the development of thyroid cancer is still unclear, the aim of this study is to evaluate the effect of high iodine concentrations on RET/PTC3-activated thyroid cells. Methods: PTC3-5 cells, a rat thyroid cell lineage harboring doxycycline-inducible RET/PTC3, were treated with 10(-3) M NaI. Cell growth was analyzed by cell counting and the MTT assay. The expression and phosphorylation state of MAPK pathway-related (Braf, Erk, pErk, and pRet) and thyroid-specific (natrium-iodide symporter [Nis] and thyroid-stimulating hormone receptor [Tshr]) proteins were analyzed by Western blotting. Thyroid-specific gene expression was further analyzed by quantitative reverse transcription (RT)-polymerase chain reaction. Results: A significant inhibition of proliferation was observed, along with no significant variation in cell death rate, in the iodine-treated cells. Further, iodine treatment attenuated the loss of Nis and Tshr gene and protein expression induced by RET/PTC3 oncogene induction. Finally, iodine treatment reduced Ret and Erk phosphorylation, without altering Braf and Erk expression. Conclusion: Our results indicate an antioncogenic role for excess iodine during thyroid oncogenic activation. These findings contribute to a better understanding of the effect of iodine on thyroid follicular cells, particularly how it may play a protective role during RET/PTC3 oncogene activation.
Resumo:
Lellis-Santos C, Giannocco G, Nunes MT. The case of thyroid hormones: how to learn physiology by solving a detective case. Adv Physiol Educ 35: 219-226, 2011; doi:10.1152/advan.00135.2010.Thyroid diseases are prevalent among endocrine disorders, and careful evaluation of patients' symptoms is a very important part in their diagnosis. Developing new pedagogical strategies, such as problem-based learning (PBL), is extremely important to stimulate and encourage medical and biomedical students to learn thyroid physiology and identify the signs and symptoms of thyroid dysfunction. The present study aimed to create a new pedagogical approach to build deep knowledge about hypo-/hyperthyroidism by proposing a hands-on activity based on a detective case, using alternative materials in place of laboratory animals. After receiving a description of a criminal story involving changes in thyroid hormone economy, students collected data from clues, such as body weight, mesenteric vascularization, visceral fat, heart and thyroid size, heart rate, and thyroid-stimulating hormone serum concentration to solve the case. Nevertheless, there was one missing clue for each panel of data. Four different materials were proposed to perform the same practical lesson. Animals, pictures, small stuffed toy rats, and illustrations were all effective to promote learning, and the detective case context was considered by students as inviting and stimulating. The activity can be easily performed independently of the institution's purchasing power. The practical lesson stimulated the scientific method of data collection and organization, discussion, and review of thyroid hormone actions to solve the case. Hence, this activity provides a new strategy and alternative materials to teach without animal euthanization.
Resumo:
The objective of this work was to develop and validate a rapid Reversed-Phase High-Performance Liquid Chromatography method for the quantification of 3,5,3 '-triiodothyroacetic acid (TRIAC) in nanoparticles delivery system prepared in different polymeric matrices. Special attention was given to developing a reliable reproductive technique for the pretreatment of the samples. Chromatographic runs were performed on an Agilent 1200 Series HPLC with a RP Phenomenex (R) Gemini C18 (150 x 4, 6 mm i.d., 5 mu m) column using acetonitrile and triethylamine buffer 0.1% (TEA) (40 : 60 v/v) as a mobile phase in an isocratic elution, pH 5.6 at a flow rate of 1 ml min(-1). TRIAC was detected at a wavelength of 220 nm. The injection volume was 20 mu l and the column temperature was maintained at 35 degrees C. The validation characteristics included accuracy, precision, specificity, linearity, recovery, and robustness. The standard curve was found to have a linear relationship (r(2) - 0.9996) over the analytical range of 5-100 mu g ml(-1) . The detection and quantitation limits were 1.3 and 3.8 mu g ml(-1), respectively. The recovery and loaded TRIAC in colloidal system delivery was nearly 100% and 98%, respectively. The method was successfully applied in polycaprolactone, polyhydroxybutyrate, and polymethylmethacrylate nanoparticles.
Resumo:
Background: Much is known about how genes regulated by nuclear receptors (NRs) are switched on in the presence of a ligand. However, the molecular mechanism for gene down-regulation by liganded NRs remains a conundrum. The interaction between two zinc-finger transcription factors, Nuclear Receptor and GATA, was described almost a decade ago as a strategy adopted by the cell to up-or down-regulate gene expression. More recently, cell-based assays have shown that the Zn-finger region of GATA2 (GATA2-Zf) has an important role in down-regulation of the thyrotropin gene (TSH beta) by liganded thyroid hormone receptor (TR). Methodology/Principal Findings: In an effort to better understand the mechanism that drives TSH beta down-regulation by a liganded TR and GATA2, we have carried out equilibrium binding assays using fluorescence anisotropy to study the interaction of recombinant TR and GATA2-Zf with regulatory elements present in the TSH beta promoter. Surprisingly, we observed that ligand (T3) weakens TR binding to a negative regulatory element (NRE) present in the TSH beta promoter. We also show that TR may interact with GATA2-Zf in the absence of ligand, but T3 is crucial for increasing the affinity of this complex for different GATA response elements (GATA-REs). Importantly, these results indicate that TR complex formation enhances DNA binding of the TR-GATA2 in a ligand-dependent manner. Conclusions: Our findings extend previous results obtained in vivo, further improving our understanding of how liganded nuclear receptors down-regulate gene transcription, with the cooperative binding of transcription factors to DNA forming the core of this process.
Resumo:
Background: The metastatic disease rather than the primary tumor itself is responsible for death in most solid tumors, including breast cancer. The role of matrix metalloproteinases ( MMPs), tissue inhibitors of MMPs (TIMPs) and Reversion-inducing cysteine-rich protein with Kazal motifs ( RECK) in the metastatic process has previously been established. However, in all published studies only a limited number of MMPs/MMP inhibitors was analyzed in a limited number of cell lines. Here, we propose a more comprehensive approach by analyzing the expression levels of several MMPs (MMP-2, MMP-9 and MMP-14) and MMP inhibitors (TIMP-1, TIMP-2 and RECK) in different models ( five human breast cancer cell lines, 72 primary breast tumors and 30 adjacent normal tissues). Methods: We analyzed the expression levels of MMP-2, MMP-9 and MMP-14 and their inhibitors (TIMP-1, TIMP-2 and RECK) by quantitative RT-PCR (qRT-PCR) in five human breast cancer cell lines presenting increased invasiveness and metastatic potential, 72 primary breast tumors and 30 adjacent normal tissues. Moreover, the role of cell-extracellular matrix elements interactions in the regulation of expression and activity of MMPs and their inhibitors was analyzed by culturing these cell lines on plastic or on artificial ECM (Matrigel). Results: The results demonstrated that MMPs mRNA expression levels displayed a positive and statistically significant correlation with the transcriptional expression levels of their inhibitors both in the cell line models and in the tumor tissue samples. Furthermore, the expression of all MMP inhibitors was modulated by cell-Matrigel contact only in highly invasive and metastatic cell lines. The enzyme/inhibitor balance at the transcriptional level significantly favors the enzyme which is more evident in tumor than in adjacent non-tumor tissue samples. Conclusion: Our results suggest that the expression of MMPs and their inhibitors, at least at the transcriptional level, might be regulated by common factors and signaling pathways. Therefore, the multi-factorial analysis of these molecules could provide new and independent prognostic information contributing to the determination of more adequate therapy strategies for each patient.`
Resumo:
A fully automated methodology was developed for the determination of the thyroid hormones levothyroxine (T4) and liothyronine (T3). The proposed method exploits the formation of highly coloured charge-transfer (CT) complexes between these compounds, acting as electron donors, and pi-acceptors such as chloranilic acid (CIA) and 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ). For automation of the analytical procedure a simple, fast and versatile single interface flow system (SIFA)was implemented guaranteeing a simplified performance optimisation, low maintenance and a cost-effective operation. Moreover, the single reaction interface assured a convenient and straightforward approach for implementing job`s method of continuous variations used to establish the stoichiometry of the formed CT complexes. Linear calibration plots for levothyroxine and liothyronine concentrations ranging from 5.0 x 10(-5) to 2.5 x 10(-4) mol L(-1) and 1.0 x 10(-5) to 1.0 x 10(-4) mol L(-1), respectively, were obtained, with good precision (R.S.D. <4.6% and <3.9%) and with a determination frequency of 26 h(-1) for both drugs. The results obtained for pharmaceutical formulations were statistically comparable to the declared hormone amount with relative deviations lower than 2.1%. The accuracy was confirmed by carrying out recovery studies, which furnished recovery values ranging from 96.3% to 103.7% for levothyroxine and 100.1% for liothyronine. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Sequencing technologies and new bioinformatics tools have led to the complete sequencing of various genomes. However, information regarding the human transcriptome and its annotation is yet to be completed. The Human Cancer Genome Project, using ORESTES (open reading frame EST sequences) methodology, contributed to this objective by generating data from about 1.2 million expressed sequence tags. Approximately 30 of these sequences did not align to ESTs in the public databases and were considered no-match ORESTES. On the basis that a set of these ESTs could represent new transcripts, we constructed a cDNA microarray. This platform was used to hybridize against 12 different normal or tumor tissues. We identified 3421 transcribed regions not associated with annotated transcripts, representing 83.3 of the platform. The total number of differentially expressed sequences was 1007. Also, 28 of analyzed sequences could represent noncoding RNAs. Our data reinforces the knowledge of the human genome being pervasively transcribed, and point out molecular marker candidates for different cancers. To reinforce our data, we confirmed, by real-time PCR, the differential expression of three out of eight potentially tumor markers in prostate tissues. Lists of 1007 differentially expressed sequences, and the 291 potentially noncoding tumor markers were provided.
Resumo:
Protoporphyrin IX (PpIX) is a porphyrin derivative that is accumulated in cancerous tissue in consequence of the tumor-specific metabolic alterations. The aim of this study was to evaluate the accumulation of PpIX in mice bearing renal cell carcinoma by spectroscopy analysis. A total of 24 male Balb/c mice, 6 weeks old, were divided into six groups: Normal (without inoculation of tumor cells) and 4, 8, 13, 16, and 20 days after inoculation of tumor cells. The orthotopic tumor model of renal cancer was used. Murine renal cell carcinoma (Renca cells) were inoculated into the subcapsular space of the kidney. Normal and tumor-bearing kidneys in different progression stages were removed and analyzed by ex-vivo spectroscopy and by microscopy, for tumor histometric analysis. Emission spectra were obtained by exciting the samples at 405 nm. Significant differences between normal and tumor-bearing kidneys in autofluorescence shape occurred in the 600-700 nm spectral region. A good correlation was found between emission band intensity at 635 nm and the tumor area.
Resumo:
This paper reports the purification and biochemical/pharmacological characterization of two myotoxic phospholipases A(2) (PLA(2)S) from Bothrops brazili venom, a native snake from Brazil. Both myotoxins (MTX-I and II) were purified by a single chromatographic step on a CM-Sepharose ion-exchange column up to a high purity level, showing M-r similar to 14,000 for the monomer and 28,000 Da for the dimer. The N-terminal and internal peptide amino acid sequences showed similarity with other myotoxic PLA2S from snake venoms, MTX-I belonging to Asp49 PLA(2) class, enzymatically active, and MTX-II to Lys49 PLA(2)S, catalytically inactive. Treatment of MTX-I with BPB and EDTA reduced drastically its PLA(2) and anticoagulant activities, corroborating the importance of residue His48 and Ca2+ ions for the enzymatic catalysis. Both PLA(2)S induced myotoxic activity and dose-time dependent edema similar to other isolated snake venom toxins from Bothrops and Crotalus genus. The results also demonstrated that MTXs and cationic synthetic peptides derived from their 115-129 C-terminal region displayed cytotoxic activity on human T-cell leukemia (JURKAT) lines and microbicidal effects against Escherichia coli, Candida albicans and Leishmania sp. Thus, these PLA(2) proteins and C-terminal synthetic peptides present multifunctional properties that might be of interest in the development of therapeutic strategies against parasites, bacteria and cancer. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
The aim of present study was to verify the in vitro antitumor activity of a ruthenium complex, cis-(dichloro)tetraammineruthenium(III) chloride (cis-[RuCl(2)(NH(3))(4)]Cl) toward different tumor cell lines. The antitumor studies showed that ruthenium(III) complex presents a relevant cytotoxic activity against murine B cell lymphoma (A-20), murine ascitic sarcoma 180 (S-180), human breast adenocarcinoma (SK-BR-3), and human T cell leukemia (Jurkat) cell lines and a very low cytotoxicity toward human peripheral blood mononuclear cells. The ruthenium(III) complex decreased the fraction of tumor cells in G0/G1 and/or G2-M phases, indicating that this compound may act on resting/early entering G0/G1 cells and/or precycling G2-M cells. The cytotoxic activity of a high concentration (2 mg mL(-1)) of cis-[RuCl(2)(NH(3))(4)]Cl toward Jurkat cells correlated with an increased number of annexin V-positive cells and also the presence of DNA fragmentation, suggesting that this compound induces apoptosis in tumor cells. The development of new antineoplastic medications demands adequate knowledge in order to avoid inefficient or toxic treatments. Thus, a mechanistic understanding of how metal complexes achieve their activities is crucial to their clinical success and to the rational design of new compounds with improved potency.
Resumo:
The gross morphology, histology, and ultrastructure of the thyroid gland of the koala, Phascolarctos cinereus, is described. Generally, the glands were found to contain large-diameter follicles in association with an epithelium of low height. Morphometric analysis demonstrated a high relative thyroid weight (0.3 +/- 0.2 g/kg) for koalas compared with the 0.07-0.24 g/kg typical of eutherian mammals and 0.03-0.1 g/kg found in other marsupials. The relative thyroid weight of glands (0.33 +/- 0.21 g/kg) from the coastal population (less than 28 km from the coastline) was found to be significantly higher (ANOVA: P = 0.007, significant at the 1% level) than that for glands (0.21 +/- 0.11 g/kg) of noncoastal koalas (greater than 28 km from the coastline). Follicle size was positively correlated (at the 0.1% level) with relative thyroid weight in the overall koala sample. The presence of C cells, occurring singly in the epithelial layer, was demonstrated in electron micrographs. Structural features such as low epithelial height, large follicle length and width, and large intercellular spaces in association with low concentrations of free TS (3.3 +/- 2.1 pM) and free T-3 (1.4 +/- 0.9 pM) as reported previously (Lawson et al., 1996) are consistent with an unusually low level of glandular activity in the koala thyroid even though iodine concentrations in the thyroid gland [4.7 +/- 1.6 mg/g (dry weight)] as well as leaf [0.8 +/- 0.3 mu g (dry weight)] and soil samples [3.8 mu g/g (dry weight)] from the koalas' habitat appear unremarkable. (C) 1998 Academic Press.
Resumo:
Many cervical cancers express the E7 protein of human papillomavirus 16 as a tumor-specific Ag (TSA). To establish the role of E7-specific T cell help in CD8(+) CTL-mediated tumor regression, C57BL/6J mice were immunized with E7 protein or with a peptide (GF001) comprising a minimal CTL epitope of E7, together with different adjuvants, Immunized mice were challenged with an E7-expressing tumor cell line, EL4.E7. Growth of EL4.E7 was reduced following immunization with E7 and Quil-A (an adjuvant that induced a Th1-type response to E7) or with GF001 and Quil-A, Depletion of CD8(+) cells, but not CD4(+) cells, from an immunized animal abrogated protection, confirming that E7-specific CTL are necessary and sufficient for TSA-specific protection in this model. Immunization with E7 and Algammulin (an alum-based adjuvant) induced a Th2-like response and provided; no tumor protection. To investigate whether a Th2 T helper response to E7 could prevent the development of an E7-specific CTL-mediated protection, mice were simultaneously immunized with E7/Algammulin and GF001/Quil-A or, alternatively, were immunized with GF011/Quil-A 8 wk after immunization with E7/Algammulin, Tumor protection was observed in each case. We conclude that an established Th2 response to a TSA does not prevent the development of TSA-specific tumor protective CTL.