935 resultados para Three-point bending


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Food restriction reduces body weight and influence bone mass and also is correlated with bone mineral density (BMD). Mechanisms have been proposed for the loss of BMD after body weight reduction, including reduced energy intake. Growing 8 wk-old Wistar male rats were randomly divided into Control and Calorie restriction associated with sucrose 30% (CRS). These animals were subjected to intermittent food restriction during 8 weeks and had free access to tap water and sucrose30% in distilled water. The rats were euthanized at the end of week 8, blood collected from abdominal aorta artery, femurs cleaned of adherent soft tissues, scanned using dual energy X-ray absorptiometry, structural and material properties determined by three-point bending testing in the mid-diaphyseal region, bone surface tested in a microhardness tester and microstructure was assessed in a microcomputer tomography. In CRS animals body weight decreased significantly relative to the Control animals. There was a clear option for high-sucrose beverage in CRS animals. No difference was observed in biochemical, densitometric and biomechanical analyzes. Results from micro CT showed only significant difference in connectivity of trabecular bone. It has been suggested that rats submitted to food restriction consumed sugar not because of its inherent palatability, but in order to alter their macronutrient balance and animals need to meet energy demands in high-sucrose.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives. The null hypothesis was that mechanical testing systems used to determine polymerization stress (sigma(pol)) would rank a series of composites similarly. Methods. Two series of composites were tested in the following systems: universal testing machine (UTM) using glass rods as bonding substrate, UTM/acrylic rods, "low compliance device", and single cantilever device ("Bioman"). One series had five experimental composites containing BisGMA:TEGDMA in equimolar concentrations and 60, 65, 70, 75 or 80 wt% of filler. The other series had five commercial composites: Filtek Z250 (3M ESPE), Filtek A110 (3M ESPE), Tetric Ceram (Ivoclar), Heliomolar (Ivoclar) and Point 4 (Kerr). Specimen geometry, dimensions and curing conditions were similar in all systems. sigma(pol) was monitored for 10 min. Volumetric shrinkage (VS) was measured in a mercury dilatometer and elastic modulus (E) was determined by three-point bending. Shrinkage rate was used as a measure of reaction kinetics. ANOVA/Tukey test was performed for each variable, separately for each series. Results. For the experimental composites, sigma(pol) decreased with filler content in all systems, following the variation in VS. For commercial materials, sigma(pol) did not vary in the UTM/acrylic system and showed very few similarities in rankings in the others tests system. Also, no clear relationships were observed between sigma(pol) and VS or E. Significance. The testing systems showed a good agreement for the experimental composites, but very few similarities for the commercial composites. Therefore, comparison of polymerization stress results from different devices must be done carefully. (c) 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim. This work tested the effect of the addition of Al2O3/GdAlO3 longitudinal fibers in different contents to veneering porcelain of two dental all ceramic systems. Methods: Fibers (0.5 mm diameter) obtained by the Laser Heated Pedestal Growth (LHPG) method were added to bar-shaped specimens made by veneer porcelain (monolayers) or both the veneer and the core ceramic (bilayers) of two all-ceramic systems: In-Ceram Alumina - glass infiltrated alumina composite (GIA) and In-Ceram 2000 AL Cubes - alumina polycrystal (AP) (VITA Zahnfabrik). The longitudinal fibers were added to veneering porcelain (VM7) in two different proportions: 10 or 17 vol%. The bars were divided into nine experimental conditions (n = 10) according to material used: VM7 porcelain monolayers, VM7/GIA, VM7/AP; and according to the amount of fibers within the porcelain layer: no fibers, 10 vol% or 17 vol%. After grinding and polishing the specimens were submitted to a three point bending test (crosshead speed = 0.5 mm/min) with porcelain positioned at tensile side. Data were analyzed by means of one-way ANOVA and a Tukey's test (alpha = 5%). Scanning electronic microscopy (SEM) was conducted for fractographic analysis. Results. Regarding the groups without fiber addition, VM7/AP showed the highest flexural strength (MPa), followed by VM7/GIA and VM7 monolayers. The addition of fibers led to a numerical increase in flexural strength for all groups. For VM7/GIA bilayers the addition of 17 vol% of fibers resulted in a significant 48% increase in the flexural strength compared to the control group. Fractographic analysis revealed that the crack initiation site was in porcelain at the tensile surface. Cracks also propagated between fibers before heading for the alumina core. Conclusions. The addition of 17 vol% of Al2O3/GdAlO3 longitudinal fibers to porcelain/glass infiltrated alumina bilayers significantly improved its flexural strength. 10 vol% or 17 vol% of fibers inclusion increased the flexural strength for all groups. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: The flexural strength and the elastic modulus of acrylic resins, Dencor, Duralay and Trim Plus II, were evaluated with and without the addition of silanised glass fibre. Materials and methods: To evaluate the flexural strength and elastic modulus, 60 test specimens were fabricated with the addition of 10% ground silanised glass fibres for the experimental group, and 60 without the incorporation of fibres, for the control group, with 20 test specimens being made of each commercial brand of resin (Dencor, Duralay and Trim Plus II) for the control group and experimental group. After the test specimens had been completed, the flexural strength and elastic modulus tests were performed in a universal testing device, using the three-point bending test. For the specimens without fibres the One-Way Analysis of Variance and the complementary Tukey test were used, and for those with fibres it was not normal, so that the non-parametric Mann-Whitney test was applied. Results: For the flexural strength test, there was no statistical difference (p > 0.05) between each commercial brand of resin without fibres [Duralay 84.32(+/- 8.54), Trim plus 85.39(+/- 6.74), Dencor 96.70(+/- 6.52)] and with fibres (Duralay 87.18, Trim plus 88.33, Dencor 98.10). However, for the elastic modulus, there was statistical difference (p > 0.01) between each commercial brand of resin without fibres [Duralay 2380.64 (+/- 168.60), Trim plus 2740.37(+/- 311.74), Dencor 2595.42(+/- 261.22)] and with fibres (Duralay 3750.42, Trim plus 3188.80, Dencor 3400.75). Conclusion: The result showed that the incorporation of fibre did not interfere in the flexural strength values, but it increased the values for the elastic modulus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A specific manufacturing process to obtain continuous glass fiber-reinforced RIFE laminates was studied and some of their mechanical properties were evaluated. Young's modulus and maximum strength were measured by three-point bending test and tensile test using the Digital Image Correlation (DIC) technique. Adhesion tests, thermal analysis and microscopy were used to evaluate the fiber-matrix adhesion, which is very dependent on the sintering time. The composite material obtained had a Young's modulus of 14.2 GPa and ultimate strength of 165 MPa, which corresponds to approximately 24 times the modulus and six times the ultimate strength of pure RIFE. These results show that the RIFE composite, manufactured under specific conditions, has great potential to provide structural parts with a performance suitable for application in structural components. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigated the role of neonatal sex steroids in rats on sexual dimorphism in bone, as well as on leptin and corticosterone concentrations throughout the lifespan. Castration of males and androgenization of females were used as models to investigate the role of sex steroids shortly after birth. Newborn Wistar rats were divided into four groups, two male groups and two female groups. Male pups were cryoanesthetized and submitted to castration or sham-operation procedures within 24 h after birth. Female pups received a subcutaneous dose of testosterone propionate (100 mu g) or vehicle. Rats were euthanized at 20, 40, or 120 postnatal days. Body weight was also measured at 20, 40, and 120 days of age, and blood samples and femurs were collected. The length and thickness of the femurs were measured and the areal bone mineral density (areal BMD) was determined by dual-energy X-ray absorptiometry (DEXA). Biomechanical three-point bending testing was used to evaluate bone breaking strength, energy to fracture, and extrinsic stiffness. Blood samples were submitted to a biochemical assay to estimate calcium, phosphorus, alkaline phosphatase, leptin, and corticosterone levels. Weight gain, areal BMD and bone biomechanical properties increased rapidly with respect to age in all groups. In control animals, skeletal sexual dimorphism, leptin concentration, and dimorphic corticosterone concentration patterns were evident after puberty. However, androgen treatment induced changes in growth, areal BMD, and bone mass properties in neonatal animals. In addition, neonatally-castrated males had bone development and mechanical properties similar to those of control females. These results suggest that the exposure to neonatal androgens may represent at least one covariate that mediates dimorphic variation in leptin and corticosterone secretions. The study indicates that manipulation of the androgen environment during the critical period of sexual differentiation of the brain causes long-lasting changes in bone development, as well as serum leptin and corticosterone concentrations. In addition, this study provides useful models for the investigation of bone disorders induced by hypothalamic hypogonadism. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In questa tesi si è voluta porre l’attenzione sulla suscettibilità alle alte temperature delle resine che li compongono. Lo studio del comportamento alle alte temperature delle resine utilizzate per l’applicazione dei materiali compositi è risultato un campo di studio ancora non completamente sviluppato, nel quale c’è ancora necessità di ricerche per meglio chiarire alcuni aspetti del comportamento. L’analisi di questi materiali si sviluppa partendo dal contesto storico, e procedendo successivamente ad una accurata classificazione delle varie tipologie di materiali compositi soffermandosi sull’ utilizzo nel campo civile degli FRP (Fiber Reinforced Polymer) e mettendone in risalto le proprietà meccaniche. Considerata l’influenza che il comportamento delle resine riveste nel comportamento alle alte temperature dei materiali compositi si è, per questi elementi, eseguita una classificazione in base alle loro proprietà fisico-chimiche e ne sono state esaminate le principali proprietà meccaniche e termiche quali il modulo elastico, la tensione di rottura, la temperatura di transizione vetrosa e il fenomeno del creep. Sono state successivamente eseguite delle prove sperimentali, effettuate presso il Laboratorio Resistenza Materiali e presso il Laboratorio del Dipartimento di Chimica Applicata e Scienza dei Materiali, su dei provini confezionati con otto differenti resine epossidiche. Per valutarne il comportamento alle alte temperature, le indagini sperimentali hanno valutato dapprima le temperature di transizione vetrosa delle resine in questione e, in seguito, le loro caratteristiche meccaniche. Dalla correlazione dei dati rilevati si sono cercati possibili legami tra le caratteristiche meccaniche e le proprietà termiche delle resine. Si sono infine valutati gli aspetti dell’applicazione degli FRP che possano influire sul comportamento del materiale composito soggetto alle alte temperature valutando delle possibili precauzioni che possano essere considerate in fase progettuale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the work is to conduct a finite element model analysis on a small – size concrete beam and on a full size concrete beam internally reinforced with BFRP exposed at elevated temperatures. Experimental tests performed at Kingston University have been used to compare the results from the numerical analysis for the small – size concrete beam. Once the behavior of the small – size beam at room temperature is investigated and switching to the heating phase reinforced beams are tested at 100°C, 200°C and 300°C in loaded condition. The aim of the finite element analysis is to reflect the three – point bending test adopted into the oven during the exposure of the beam at room temperature and at elevated temperatures. Performance and deformability of reinforced beams are straightly correlated to the material properties and a wide analysis on elastic modulus and coefficient of thermal expansion is given in this work. Develop a good correlation between the numerical model and the experimental test is the main objective of the analysis on the small – size concrete beam, for both modelling the aim is also to estimate which is the deterioration of the material properties due to the heating process and the influence of different parameters on the final result. The focus of the full – size modelling which involved the last part of this work is to evaluate the effect of elevated temperatures, the material deterioration and the deflection trend on a reinforced beam characterized by a different size. A comparison between the results from different modelling has been developed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Uno degli aspetti fondamentali della circolazione stradale è rappresentato dalla conservazione della qualità, in termini di comfort e sicurezza trasmessa all’utente, della sovrastruttura stradale. L’obiettivo della manutenzione stradale è di garantire un livello soddisfacente delle caratteristiche funzionali lungo tutto l’arco della vita utile dell’infrastruttura. Le ridotte disponibilità economiche di enti ed amministrazioni pubbliche, spingono i ricercatori ed i tecnici del settore ad individuare soluzioni tecniche e progettuali, in grado di coniugare economicità e durabilità degli interventi. Negli ultimi decenni, si è cercato di studiare l’effetto prodotto dall’eventuale inserimento di un interstrato di rinforzo all’interno della sovrastruttura. Lo studio, sviluppato e descritto nel presente documento, ha l’obiettivo di migliorare la comprensione dell’effettivo contributo che i materiali di rinforzo possono produrre all’interno degli strati legati di una pavimentazione flessibile. Gli obiettivi dell’indagine sperimentale, descritta nel presente documento, possono essere sintetizzati in tre punti fondamentali: - caratterizzazione flessionale di pavimentazioni bituminose con interstrati sintetici, in particolare lo scopo dell’indagine verte a quantificare il miglioramento del comportamento meccanico della pavimentazione dotata di rinforzo; - analisi del comportamento a fessurazione della pavimentazione, rinforzata e non, con particolare attenzione nei confronti del reflective cracking; - valutazione del collegamento tra i due strati bituminosi in presenza di interstrato sintetico. Per raggiungere tali obiettivi sono state eseguite due serie di prove di flessione su 3 punti (3PB) e prove di taglio Leutner.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SUMMARY The aim of this study was to evaluate the influence of surface roughness on surface hardness (Vickers; VHN), elastic modulus (EM), and flexural strength (FLS) of two computer-aided design/computer-aided manufacturing (CAD/CAM) ceramic materials. One hundred sixty-two samples of VITABLOCS Mark II (VMII) and 162 samples of IPS Empress CAD (IPS) were ground according to six standardized protocols producing decreasing surface roughnesses (n=27/group): grinding with 1) silicon carbide (SiC) paper #80, 2) SiC paper #120, 3) SiC paper #220, 4) SiC paper #320, 5) SiC paper #500, and 6) SiC paper #1000. Surface roughness (Ra/Rz) was measured with a surface roughness meter, VHN and EM with a hardness indentation device, and FLS with a three-point bending test. To test for a correlation between surface roughness (Ra/Rz) and VHN, EM, or FLS, Spearman rank correlation coefficients were calculated. The decrease in surface roughness led to an increase in VHN from (VMII/IPS; medians) 263.7/256.5 VHN to 646.8/601.5 VHN, an increase in EM from 45.4/41.0 GPa to 66.8/58.4 GPa, and an increase in FLS from 49.5/44.3 MPa to 73.0/97.2 MPa. For both ceramic materials, Spearman rank correlation coefficients showed a strong negative correlation between surface roughness (Ra/Rz) and VHN or EM and a moderate negative correlation between Ra/Rz and FLS. In conclusion, a decrease in surface roughness generally improved the mechanical properties of the CAD/CAM ceramic materials tested. However, FLS was less influenced by surface roughness than expected.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The strength decrease in magnesium implants was studied in vitro and in vivo, with and without a protective plasmaelectrolytic coating. In vivo, degradation was examined by implanting rectangular plates on top of the nasal bone of miniature pigs. The presence of gas pockets in the soft tissue surrounding the implants was evaluated with intermediate X-rays and computed X-ray tomography scans before euthanasia. After 12 and 24weeks of in vivo degradation, the large rectangular plates were removed and mechanically tested in three-point bending. In vitro, identical plates were immersed in simulated body fluid for 4, 8 and 12weeks. In vitro and in vivo results showed that onset of gas release can be delayed by the plasmaelectrolytic coating. Mass loss and strength retention during in vivo degradation is about four times slower than during in vitro degradation for the chosen test conditions. Despite the slow degradation of the investigated WE43 alloy, the occurrence of gas pockets could not be completely avoided. Nevertheless, uniformity of degradation and reliable strength retention make this alloy a prime candidate for the use of magnesium in cranio-maxillofacial surgery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ultra-high performance fiber reinforced concrete (UHPFRC) has arisen from the implementation of a variety of concrete engineering and materials science concepts developed over the last century. This material offers superior strength, serviceability, and durability over its conventional counterparts. One of the most important differences for UHPFRC over other concrete materials is its ability to resist fracture through the use of randomly dispersed discontinuous fibers and improvements to the fiber-matrix bond. Of particular interest is the materials ability to achieve higher loads after first crack, as well as its high fracture toughness. In this research, a study of the fracture behavior of UHPFRC with steel fibers was conducted to look at the effect of several parameters related to the fracture behavior and to develop a fracture model based on a non-linear curve fit of the data. To determine this, a series of three-point bending tests were performed on various single edge notched prisms (SENPs). Compression tests were also performed for quality assurance. Testing was conducted on specimens of different cross-sections, span/depth (S/D) ratios, curing regimes, ages, and fiber contents. By comparing the results from prisms of different sizes this study examines the weakening mechanism due to the size effect. Furthermore, by employing the concept of fracture energy it was possible to obtain a comparison of the fracture toughness and ductility. The model was determined based on a fit to P-w fracture curves, which was cross referenced for comparability to the results. Once obtained the model was then compared to the models proposed by the AFGC in the 2003 and to the ACI 544 model for conventional fiber reinforced concretes.