919 resultados para Three-phase rectifier


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three-phase three-wire power flow algorithms, as any tool for power systems analysis, require reliable impedances and models in order to obtain accurate results. Kron's reduction procedure, which embeds neutral wire influence into phase wires, has shown good results when three-phase three-wire power flow algorithms based on current summation method were used. However, Kron's reduction can harm reliabilities of some algorithms whose iterative processes need loss calculation (power summation method). In this work, three three-phase three-wire power flow algorithms based on power summation method, will be compared with a three-phase four-wire approach based on backward-forward technique and current summation. Two four-wire unbalanced medium-voltage distribution networks will be analyzed and results will be presented and discussed. © 2004 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In transmission line transient analyses, a single real transformation matrix can obtain exact modes when the analyzed line is transposed. For non-transposed lines, the results are not exact. In this paper, non-symmetrical and non transposed three-phase line samples are analyzed with a single real transformation matrix application (Clarke's matrix). Some interesting characteristics of this matrix application are: single, real, frequency independent, line parameter independent, identical for voltage and current determination. With Clarke's matrix use, mathematical simplifications are obtained and the developed model can be applied directly in programs based on time domain. This model works without convolution procedures to deal with phase-mode transformation. In EMTP programs, Clarke's matrix can be represented by ideal transformers and the frequency dependent line parameters can be represented by modified-circuits. With these representations, the electrical values at any line point can be accessed for phase domain or mode domain using the Clarke matrix or its inverse matrix. For symmetrical and non-transposed lines, the model originates quite small errors. In addition, the application of the proposed model to the non-symmetrical and non-transposed three phase transmission lines is investigated. ©2005 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper it is proposed a novel hybrid three-phase rectifier capable to achieve high input power factor (PF), and low total harmonic distortion in the input currents (THDI). The proposed hybrid high power rectifier is composed by a standard three-phase 6-pulses diode rectifier (Graetz bridge) with a parallel connection of single-phase Boost rectifiers in each three-phase rectifier leg. Such topology results in a structure capable of programming the input current waveform and providing conditions for obtaining high input power factor and low harmonic current distortion. In order to validate the proposed hybrid rectifier, this paper describes its principles of operation, with detailed experimental results and discussions on power rating of the required Boost converters as related to the desired total harmonic current distortion. It is demonstrated that only a fraction of the output power is processed through the Boost converters, making the proposed solution economically viable for very high power installations, with fast pay back of the investment. Moreover, retrofitting to existing installations is also feasible since the parallel path can be easily controlled by integration with the existing de-link. A prototype rated at 6 kW has been implemented in laboratory and fully demonstrated its operation, performance and feasibility to high power applications. © 2005 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this paper is to show an alternative representation in time domain of a non-transposed three-phase transmission line decomposed in its exact modes by using two transformation matrices. The first matrix is Clarke's matrix that is real, frequency independent, easily represented in computational transient programs (EMTP) and separates the line into Quasi-modes α, β and zero. After that, Quasi-modes a and zero are decomposed into their exact modes by using a modal transformation matrix whose elements can be synthesized in time domain through standard curve-fitting techniques. The main advantage of this alternative representation is to reduce the processing time because a frequency dependent modal transformation matrix of a three-phase line has nine elements to be represented in time domain while a modal transformation matrix of a two-phase line has only four elements. This paper shows modal decomposition process and eigenvectors of a non-transposed three-phase line with a vertical symmetry plane whose nominal voltage is 440 kV and line length is 500 km. ©2006 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper shows an alternative methodology to calculate transmission line parameters per unit length and to apply it in a three-phase line with a vertical symmetry plane. This procedure is derived from a general procedure where the modal transformation matrix of the line is required. In this paper, the unknown modal transformation matrix requested by general procedure is substituted by Clarke's matrix. With the substitution that is shown in the paper, the transmission line parameters can be obtained starting from impedances measured in one terminal of the line. First, the article shows the classical methodology to calculate frequency dependent transmission line parameters by using Carson and Pollaczeck's equations for representing the ground effect and Bessel's functions to represent the skin effect. After that, a new procedure is shown to calculate frequency dependent transmission line parameters directly from currents and voltages of an existing line. Then, this procedure is applied in a non-transposed three-phase transmission line whose parameters have been previously calculated by using the classical methodology. Finally, the results obtained by using the new procedure and by using the classical methodology are compared. The article shows simulation results for typical frequency spectra of switching transients (10 Hz to 10 kHz). Results have shown that procedure has © 2006 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clarke's matrix has been used as an eigenvector matrix for transposed three-phase transmission lines and it can be applied as a phase-mode transformation matrix for transposed cases. Considering untransposed three-phase transmission lines, Clarke's matrix is not an exact eigenvector matrix. In this case, the errors related to the diagonal elements of the Z and Y matrices can be considered negligible, if these diagonal elements are compared to the exact elements in domain mode. The mentioned comparisons are performed based on the error and frequency scan analyses. From these analyses and considering untransposed asymmetrical three-phase transmission lines, a correction procedure is determined searching for better results from the Clarke's matrix use as a phase-mode transformation matrix. Using the Clarke's matrix, the relative errors of the eigenvalue matrix elements can be considered negligible and the relative values of the off-diagonal elements are significant. Applying the corrected transformation matrices, the relative values of the off-diagonal elements are decreased. The comparisons among the results of these analyses show that the homopolar mode is more sensitive to the frequency influence than the two other modes related to three-phase lines. © 2006 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this paper is to show an alternative representation in time domain of a non-transposed three-phase transmission line decomposed in its exact modes by using two transformation matrices. The first matrix is Clarke's matrix that is real, frequency independent, easily represented in computational transient programs (EMTP) and separates the line into Quasi-modes α, β and zero. After that, Quasi-modes α and zero are decomposed into their exact modes by using a modal transformation matrix whose elements can be synthesized in time domain through standard curve-fitting techniques. The main advantage of this alternative representation is to reduce the processing time because a frequency dependent modal transformation matrix of a three-phase line has nine elements to be represented in time domain while a modal transformation matrix of a two-phase line has only four elements. This paper shows modal decomposition process and eigenvectors of a non-transposed three-phase line with a vertical symmetry plane whose nominal voltage is 440 kV and line length is 500 km. © 2006 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Some constant matrices can be used as phase-mode transformation matrices for transposed three-phase transmission lines. Clarke's matrix is one of these options. Its application as a phase-mode transformation matrix for untransposed three-phase transmission lines has been analyzed through error and frequency scan comparisons. Based on an actual untransposed asymmetrical three-phase transmission line example, a correction procedure is applied searching for better results from the Clarke's matrix applicaton as a phase-mode transformation matrix. The error analyses are carried out using Clarke's matrix and the new transformation matrices obtained from the correction procedure. Applying Clarke's matrix, the relative errors of the eigenvalue matrix elements can be considered negligible and the relative values of the off-diagonal elements are significant. If the the corrected transformation matrices are used, the relative values of the off-diagonal elements are decreased. Based on the results of these analyses, the homopolar mode is more sensitive to the frequency influence than the two other modes related to three-phase lines. © 2007 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper a three-phase power flow for electrical distribution systems considering different models of voltage regulators is presented. A voltage regulator (VR) is an equipment that maintains the voltage level in a predefined value in a distribution line in spite of the load variations within its nominal power. Three different types of connections are analyzed: 1) wye-connected regulators, 2) open delta-connected regulators and 3) closed delta-connected regulators. To calculate the power flow, the three-phase backward/forward sweep algorithm is used. The methodology is tested on the IEEE 34 bus distribution system. ©2008 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the major similarities and discrepancies among three important current decompositions proposed for the interpretation of unbalanced and/or non linear three-phase four-wire power circuits. The considered approaches were the so-called FBD Theory, the pq-Theory and the CPT. Although the methods are based on different concepts, the results obtained under ideal conditions (sinusoidal and balanced signals) are very similar. The main differences appear in the presence of unbalanced and non linear load conditions. It will be demonstrated and discussed how the choice of the voltage referential and the return conductor impedance can influence in the resulting current components, as well as, the way of interpreting a power circuit with return conductor. Under linear unbalanced conditions, both FBD and pq-Theory suggest that the some current components contain a third-order harmonic. Besides, neither pq-Theory nor FBD method are able to provide accurate information for reactive current under unbalanced and distorted conditions, what can be done by means of the CPT. © 2009 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to contribute to the discussion of defining a generalized power theory, valid for unbalanced and non linear circuits, this paper discusses the relationship and discrepancies among four modern power theories. Three-phase four-wire circuits, under different conditions, have been analyzed, since the most conflicting and intriguing interpretations take place in case of return conductor occurrence. Simulation results of different load, power supply and line conditions will be discussed in order to elucidate the author's conclusions and to provoke the readers for additional discussions. © 2010 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Distributed Generators (DG) are generally modeled as PQ or PV buses in power flow studies. But in order to integrate DG units into the distribution systems and control the reactive power injection it is necessary to know the operation mode and the type of connection to the system. This paper presents a single-phase and a three-phase mathematical model to integrate DG in power flow calculations in distribution systems, especially suited for Smart Grid calculations. If the DG is in PV mode, each step of the power flow algorithm calculates the reactive power injection from the DG to the system to keep the voltage in the bus in a predefined level, if the DG is in PQ mode, the power injection is considered as a negative load. The method is tested on two well known test system, presenting single-phase results on 85 bus system, and three-phase results in the IEEE 34 bus test system. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents some methodologies for reactive energy measurement, considering three modern power theories that are suitable for three-phase four-wire non-sinusoidal and unbalanced circuits. The theories were applied in some profiles collected in electrical distribution systems which have real characteristics for voltages and currents measured by commercial reactive energy meters. The experimental results are presented in order to analyze the accuracy of the methodologies, considering the standard IEEE 1459-2010 as a reference. Finally, for additional comparisons, the theories will be confronted with the modern Yokogawa WT3000 energy meter and three samples of a commercial energy meter through an experimental setup. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the study of the so called Generalized Symmetrical Components, proposed by Tenti et. al. to the analysis of unbalanced periodic non sinusoidal three phase systems. As a result, it was possible to establish a proper relationship between such of generalized symmetrical components and Fortescue symmetrical components to the harmonic frequencies that compose a generic periodic non sinusoidal three phase system. © 2011 IEEE.