957 resultados para Thin cell layer


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using a variational method, a general three-dimensional solution to the problem of a sliding spherical inclusion embedded in an infinite anisotropic medium is presented in this paper. The inclusion itself is also a general anisotropic elastic medium. The interface is treated as a thin interface layer with interphase anisotropic properties. The displacements in the matrix and the inclusion are expressed as polynomial series of the cartesian coordinate components. Using the virtual work principle, a set of linear algebraic equations about unknown coefficients are obtained. Then the general sliding spherical inclusion problem is accurately solved. Based on this solution, a self-consistent method for sliding polycrystals is proposed. Combining this with a two-dimensional model of an aggregate polycrystal, a systematic analysis of the mechanical behaviour of sliding polycrystals is given in detail. Numerical results are given to show the significant effect of grain boundary sliding on the overall mechanical properties of aggregate polycrystals.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a general self-consistent theory of evolution and propagation of wavelets on the galactic disk. A simplified model for this theory, i. e. the thin transition-layer approximation is proposed.There are three types of solutions to the basic equation governing the evolution of wavelets on the disk: (ⅰ) normal propagating type; (ⅱ) swing type; (ⅲ) general evolving type. The results show that the first two types are applicable to a certain domain on the galactic disk and a certain region of the wave number of wavelets. The third is needed to join the other two types and to yield a coherent total picture of the wave motion. From the present theory, it can be seen that the well-known "swing theory" of the G-L sheet model holds only for a certain class of basic states of galaxies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

研究一个液体薄层在热源作用下的流动特征.Pimputakar和Ostrach给出了单热源作用下薄层液体的高度和流场方程.在此基础上具体分析比较了多个热源分布作用下的流动图像随各参数尤其是随热源间距离不同的变化情况,着重讨论产生的分叉现象.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

FeNi/FeMn bilayers were grown in a magnetic field and subjected to heat treatments at temperatures of 50 to 350 degrees C in vacuum or in a gas mixture containing oxygen. In the as-deposited state, the hysteresis loop of 30 nm FeNi layer was shifted. Low temperature annealing leads to a decrease of the exchange bias field. Heat treatments at higher temperatures in gas mixture result in partial oxidation of 20 nm thick FeMn layer leading to a nonlinear dependence of coercivity and a switching field of FeNi layer on annealing temperature. The maximum of coercivity and switching field were observed after annealing at 300 degrees C.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The motion of a single Brownian particle of arbitrary size through a dilute colloidal dispersion of neutrally buoyant bath spheres of another characteristic size in a Newtonian solvent is examined in two contexts. First, the particle in question, the probe particle, is subject to a constant applied external force drawing it through the suspension as a simple model for active and nonlinear microrheology. The strength of the applied external force, normalized by the restoring forces of Brownian motion, is the Péclet number, Pe. This dimensionless quantity describes how strongly the probe is upsetting the equilibrium distribution of the bath particles. The mean motion and fluctuations in the probe position are related to interpreted quantities of an effective viscosity of the suspension. These interpreted quantities are calculated to first order in the volume fraction of bath particles and are intimately tied to the spatial distribution, or microstructure, of bath particles relative to the probe. For weak Pe, the disturbance to the equilibrium microstructure is dipolar in nature, with accumulation and depletion regions on the front and rear faces of the probe, respectively. With increasing applied force, the accumulation region compresses to form a thin boundary layer whose thickness scales with the inverse of Pe. The depletion region lengthens to form a trailing wake. The magnitude of the microstructural disturbance is found to grow with increasing bath particle size -- small bath particles in the solvent resemble a continuum with effective microviscosity given by Einstein's viscosity correction for a dilute dispersion of spheres. Large bath particles readily advect toward the minimum approach distance possible between the probe and bath particle, and the probe and bath particle pair rotating as a doublet is the primary mechanism by which the probe particle is able to move past; this is a process that slows the motion of the probe by a factor of the size ratio. The intrinsic microviscosity is found to force thin at low Péclet number due to decreasing contributions from Brownian motion, and force thicken at high Péclet number due to the increasing influence of the configuration-averaged reduction in the probe's hydrodynamic self mobility. Nonmonotonicity at finite sizes is evident in the limiting high-Pe intrinsic microviscosity plateau as a function of bath-to-probe particle size ratio. The intrinsic microviscosity is found to grow with the size ratio for very small probes even at large-but-finite Péclet numbers. However, even a small repulsive interparticle potential, that excludes lubrication interactions, can reduce this intrinsic microviscosity back to an order one quantity. The results of this active microrheology study are compared to previous theoretical studies of falling-ball and towed-ball rheometry and sedimentation and diffusion in polydisperse suspensions, and the singular limit of full hydrodynamic interactions is noted.

Second, the probe particle in question is no longer subject to a constant applied external force. Rather, the particle is considered to be a catalytically-active motor, consuming the bath reactant particles on its reactive face while passively colliding with reactant particles on its inert face. By creating an asymmetric distribution of reactant about its surface, the motor is able to diffusiophoretically propel itself with some mean velocity. The effects of finite size of the solute are examined on the leading order diffusive microstructure of reactant about the motor. Brownian and interparticle contributions to the motor velocity are computed for several interparticle interaction potential lengths and finite reactant-to-motor particle size ratios, with the dimensionless motor velocity increasing with decreasing motor size. A discussion on Brownian rotation frames the context in which these results could be applicable, and future directions are proposed which properly incorporate reactant advection at high motor velocities.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The warm plasma resonance cone structure of the quasistatic field produced by a gap source in a bounded magnetized slab plasma is determined theoretically. This is initially determined for a homogeneous or mildly inhomogeneous plasma with source frequency lying between the lower hybrid frequency and the plasma frequency. It is then extended to the complicated case of an inhomogeneous plasma with two internal lower hybrid layers present, which is of interest to radio frequency heating of plasmas.

In the first case, the potential is obtained as a sum of multiply reflected warm plasma resonance cones, each of which has a similar structure, but a different size, amplitude, and position. An important interference between nearby multiply-reflected resonance cones is found. The cones are seen to spread out as they move away from the source, so that this interference increases and the individual resonance cones become obscured far away from the source.

In the second case, the potential is found to be expressible as a sum of multiply-reflected, multiply-tunnelled, and mode converted resonance cones, each of which has a unique but similar structure. The effects of both collisional and collisionless damping are included and their effects on the decay of the cone structure studied. Various properties of the cones such as how they move into and out of the hybrid layers, through the evanescent region, and transform at the hybrid layers are determined. It is found that cones can tunnel through the evanescent layer if the layer is thin, and the effect of the thin evanescent layer is to subdue the secondary maxima of cone relative to the main peak, while slightly broadening the main peak and shifting it closer to the cold plasma cone line.

Energy theorems for quasistatic fields are developed and applied to determine the power flow and absorption along the individual cones. This reveals the points of concentration of the flow and the various absorption mechanisms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An attempt is made to provide a theoretical explanation of the effect of the positive column on the voltage-current characteristic of a glow or an arc discharge. Such theories have been developed before, and all are based on balancing the production and loss of charged particles and accounting for the energy supplied to the plasma by the applied electric field. Differences among the theories arise from the approximations and omissions made in selecting processes that affect the particle and energy balances. This work is primarily concerned with the deviation from the ambipolar description of the positive column caused by space charge, electron-ion volume recombination, and temperature inhomogeneities.

The presentation is divided into three parts, the first of which involved the derivation of the final macroscopic equations from kinetic theory. The final equations are obtained by taking the first three moments of the Boltzmann equation for each of the three species in the plasma. Although the method used and the equations obtained are not novel, the derivation is carried out in detail in order to appraise the validity of numerous approximations and to justify the use of data from other sources. The equations are applied to a molecular hydrogen discharge contained between parallel walls. The applied electric field is parallel to the walls, and the dependent variables—electron and ion flux to the walls, electron and ion densities, transverse electric field, and gas temperature—vary only in the direction perpendicular to the walls. The mathematical description is given by a sixth-order nonlinear two-point boundary value problem which contains the applied field as a parameter. The amount of neutral gas and its temperature at the walls are held fixed, and the relation between the applied field and the electron density at the center of the discharge is obtained in the process of solving the problem. This relation corresponds to that between current and voltage and is used to interpret the effect of space charge, recombination, and temperature inhomogeneities on the voltage-current characteristic of the discharge.

The complete solution of the equations is impractical both numerically and analytically, and in Part II the gas temperature is assumed uniform so as to focus on the combined effects of space charge and recombination. The terms representing these effects are treated as perturbations to equations that would otherwise describe the ambipolar situation. However, the term representing space charge is not negligible in a thin boundary layer or sheath near the walls, and consequently the perturbation problem is singular. Separate solutions must be obtained in the sheath and in the main region of the discharge, and the relation between the electron density and the applied field is not determined until these solutions are matched.

In Part III the electron and ion densities are assumed equal, and the complicated space-charge calculation is thereby replaced by the ambipolar description. Recombination and temperature inhomogeneities are both important at high values of the electron density. However, the formulation of the problem permits a comparison of the relative effects, and temperature inhomogeneities are shown to be important at lower values of the electron density than recombination. The equations are solved by a direct numerical integration and by treating the term representing temperature inhomogeneities as a perturbation.

The conclusions reached in the study are primarily concerned with the association of the relation between electron density and axial field with the voltage-current characteristic. It is known that the effect of space charge can account for the subnormal glow discharge and that the normal glow corresponds to a close approach to an ambipolar situation. The effect of temperature inhomogeneities helps explain the decreasing characteristic of the arc, and the effect of recombination is not expected to appear except at very high electron densities.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the framework of dielectric theory, the static non-local self-energy of an electron near an ultra-thin polarizable layer has been calculated and applied to study binding energies of image-potential states near free-standing graphene. The corresponding series of eigenvalues and eigenfunctions have been obtained by numerically solving the one-dimensional Schrodinger equation. The imagepotential state wave functions accumulate most of their probability outside the slab. We find that the random phase approximation (RPA) for the nonlocal dielectric function yields a superior description for the potential inside the slab, but a simple Fermi-Thomas theory can be used to get a reasonable quasi-analytical approximation to the full RPA result that can be computed very economically. Binding energies of the image-potential states follow a pattern close to the Rydberg series for a perfect metal with the addition of intermediate states due to the added symmetry of the potential. The formalism only requires a minimal set of free parameters: the slab width and the electronic density. The theoretical calculations are compared with experimental results for the work function and image-potential states obtained by two-photon photoemission.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O estudo da dinâmica de crescimento em espécies arbóreas permite melhor compreender a adaptação de uma espécie ao ambiente em que se desenvolve. Dados dessa natureza ainda são escassos no Brasil considerando-se a diversidade de espécies e fitofisionomias existentes. Esse tipo de estudo tem sido apontado como de grande relevância principalmente diante das situações atuais de desmatamento e mudanças climáticas, que exigem recuperação de áreas degradadas e prospectar como as espécies nativas sobreviveram diante deste ambiente de aceleradas mudanças. Nesta perspectiva, o objetivo deste trabalho foi investigar a dinâmica de crescimento de Tabebuia rosea, por meio do monitoramento mensal da fenologia apical e cambial caulinar e dos teores dos pigmentos fotossintetizantes: clorofilas a, b, totais e carotenoides. Os resultados obtidos foram correlacionados entre si e também com a sazonalidade das variáveis ambientais: temperatura, precipitação e fotoperíodo. No que se refere aos teores dos pigmentos fotossintetizantes, foi também avaliada as oscilações observadas nas folhas obtidas nas orientações geográficas: norte, sul, leste e oeste. O trabalho foi desenvolvido no Campus da Universidade do Estado do Rio de Janeiro, RJ, Brasil. A fenologia dos ápices caulinares foi acompanhada mensalmente a partir de observações qualitativas e quantitativas em 15 indivíduos. As amostras contendo a zona cambial foram obtidas por método não destrutivo e processadas segundo as técnicas usuais em histologia vegetal. A extração dos pigmentos fotossintéticos foi realizada em acetona 80%, com posterior centrifugação e análise ao espectrofotômetro em diferentes comprimentos de onda. Tabebuia rosea apresentou aumento na largura da zona cambial em número de camadas celulares e em micrômetros, diminuição do diâmetro radial da célula inicial fusiforme e aumento em micrômetros da camada de células em processo de alongamento e diferenciação do xilema secundário no mesmo período em que a copa das árvores estava ocupada por folhas adultas e com os teores mais elevados de clorofilas nas folhas, coincidindo com o período em que as variáveis ambientais apresentaram-se elevadas, corroborando os resultados já obtidos para outras espécies nativas da Mata Atlântica se desenvolvendo no estado do Rio de Janeiro. A maior concentração de carotenoides foi observada no período em que as variáveis ambientais apresentavam índices elevados e as plantas estavam mais expostas à radiação luminosa, possivelmente em função de um maior investimento em fotoproteção. Cabe destacar que o lado oeste da copa das árvores mostrou uma tendência em apresentar maiores concentrações dos pigmentos fotossintéticos estudados, resultado ainda não observado na literatura até o momento, o que pode ser uma estratégia da espécie em compensar níveis baixos de radiação solar com acúmulo de clorofilas.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A menopausa e a hipertensão podem alterar o remodelamento cardiovascular, porém pouco se sabe sobre sua associação no remodelamento ventricular esquerdo e na aorta. As ratas foram separadas em quatro grupos com seis animais cada: grupo Sham, OVX (ratas ooforectomizadas), 2K1C (ratas com dois rins, um clipe), e grupo 2K1C+OVX com período experimental de 11 semanas. O ventrículo esquerdo (VE) e a aorta torácica foram removidos e analisados (microscopia de luz, imuno-histoquímica e estereologia). A citologia vaginal mostrou que os animais dos grupos Sham e 2K1C ciclaram normalmente, entretanto, os animais dos grupos OVX e OVK+2K1C permaneceram na fase do diestro ou proestro. Comparado ao grupo Sham, a pressão arterial aumentou 12% no grupo OVX e 35% maior nos grupos 2K1C e OVX+2K1C. A relação massa do VE/comprimento da tíbia e a área seccional média de cardiomiócitos aumentaram em todos os grupos com exceção do grupo Sham. A vascularização intramiocárdica foi reduzida cerca de 30% em relação ao grupo Sham, não havendo diferença significativa entre os grupos OVX, 2K1C e OVX+2K1C. O tecido conjuntivo cardíaco teve um aumento superior a 45% nos grupos 2K1C e OVX+2K1C comparados ao grupo Sham, sem diferença entre o os animais do grupo Sham e OVX. O número de núcleos de cardiomiócitos do VE foi gradualmente menor nos grupos OVX, 2K1C e OVX+2K1C, sem diferença entre os dois últimos grupos. Imuno-histoquímica positiva para receptor AT1 da Ang II nas células musculares lisas da túnica média da aorta foi observado em todos os grupos. Estes resultados indicam que a ooforectomia e a hipertensão renovascular agem aumentando a pressão arterial independentemente, com conseqüente remodelamento cardíaco adverso, com estímulo maior da hipertensão renovascular que da menopausa induzida cirurgicamente.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A menopausa e a hipertensão podem alterar o remodelamento cardiovascular, porém pouco se sabe sobre sua associação no remodelamento ventricular esquerdo e na aorta. As ratas foram separadas em quatro grupos com seis animais cada: grupo Sham, OVX (ratas ooforectomizadas), 2K1C (ratas com dois rins, um clipe), e grupo 2K1C+OVX com período experimental de 11 semanas. O ventrículo esquerdo (VE) e a aorta torácica foram removidos e analisados (microscopia de luz, imuno-histoquímica e estereologia). A citologia vaginal mostrou que os animais dos grupos Sham e 2K1C ciclaram normalmente, entretanto, os animais dos grupos OVX e OVK+2K1C permaneceram na fase do diestro ou proestro. Comparado ao grupo Sham, a pressão arterial aumentou 12% no grupo OVX e 35% maior nos grupos 2K1C e OVX+2K1C. A relação massa do VE/comprimento da tíbia e a área seccional média de cardiomiócitos aumentaram em todos os grupos com exceção do grupo Sham. A vascularização intramiocárdica foi reduzida cerca de 30% em relação ao grupo Sham, não havendo diferença significativa entre os grupos OVX, 2K1C e OVX+2K1C. O tecido conjuntivo cardíaco teve um aumento superior a 45% nos grupos 2K1C e OVX+2K1C comparados ao grupo Sham, sem diferença entre o os animais do grupo Sham e OVX. O número de núcleos de cardiomiócitos do VE foi gradualmente menor nos grupos OVX, 2K1C e OVX+2K1C, sem diferença entre os dois últimos grupos. Imuno-histoquímica positiva para receptor AT1 da Ang II nas células musculares lisas da túnica média da aorta foi observado em todos os grupos. Estes resultados indicam que a ooforectomia e a hipertensão renovascular agem aumentando a pressão arterial independentemente, com conseqüente remodelamento cardíaco adverso, com estímulo maior da hipertensão renovascular que da menopausa induzida cirurgicamente.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An improved technique for transferring large area graphene grown by chemical vapor deposition on copper is presented. It is based on mechanical separation of the graphene/copper by H2 bubbles during H2O electrolysis, which only takes a few tens of seconds while leaving the copper cathode intact. A semi-rigid plastic frame in combination with thin polymer layer span on graphene gives a convenient way of handling- and avoiding wrinkles and holes in graphene. Optical and electrical characterizations prove the graphene quality is better than that obtained by traditional wet etching transfer. This technique appears to be highly reproducible and cost efficient. © 2013 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this study, we investigated non-ideal characteristics of a diamond Schottky barrier diode with Molybdenum (Mo) Schottky metal fabricated by Microwave Plasma Chemical Vapour Deposition (MPCVD) technique. Extraction from forward bias I-V and reverse bias C- 2-V measurements yields ideality factor of 1.3, Schottky barrier height of 1.872 eV, and on-resistance of 32.63 mö·cm2. The deviation of extracted Schottky barrier height from an ideal value of 2.24 eV (considering Mo workfunction of 4.53 eV) indicates Fermi level pinning at the interface. We attributed such non-ideal behavior to the existence of thin interfacial layer and interface states between metal and diamond which forms Metal-Interfacial layer-Semiconductor (MIS) structure. Oxygen surface treatment during fabrication process might have induced them. From forward bias C-V characteristics, the minimum thickness of the interfacial layer is approximately 0.248 nm. Energy distribution profile of the interface state density is then evaluated from the forward bias I-V characteristics based on the MIS model. The interface state density is found to be uniformly distributed with values around 1013 eV - 1·cm- 2. © 2013 Elsevier B.V.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Straight, vertically aligned GaAs nanowires were grown on Si(111) substrates coated with thin GaAs buffer layers. We find that the V/III precursor ratio and growth temperature are crucial factors influencing the morphology and quality of buffer layers. A double layer structure, consisting of a thin initial layer grown at low V/III ratio and low temperature followed by a layer grown at high V/III ratio and high temperature, is crucial for achieving straight, vertically aligned GaAs nanowires on Si(111) substrates. An in situ annealing step at high temperature after buffer layer growth improves the surface and structural properties of the buffer layer, which further improves the morphology of the GaAs nanowire growth. Through such optimizations we show that vertically aligned GaAs nanowires can be fabricated on Si(111) substrates and achieve the same structural and optical properties as GaAs nanowires grown directly on GaAs(111)B substrates.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

CW and time-resolved photoluminescence measurements are used to investigate exciton recombination dynamics in GaAsAlGaAs heterostructure nanowires grown with a recently developed technique which minimizes twinning. A thin capping layer is deposited to eliminate the possibility of oxidation of the AlGaAs shell as a source of oxygen defects in the GaAs core. We observe exciton lifetimes of ∼1 ns, comparable to high quality two-dimensional double heterostructures. These GaAs nanowires allow one to observe state filling and many-body effects resulting from the increased carrier densities accessible with pulsed laser excitation. © 2008 American Institute of Physics.