924 resultados para Thermo-stabilization of endoxylanases
Resumo:
Stabilization effect on metastable phase II of isotactic polybutene-1 (iPB-1) by coated carbon has been investigated by transmission electron microscopy (TEM) and electron diffraction (ED) techniques. The results indicate that after evaporating carbon, the phase II-I crystal transformation time is greatly prolonged from 9 days for carbon-uncoated samples to 120 days for carbon-coated ones under atmospheric pressure, while under high pressure (50 bar), the phase transformation time increases from 5 min for the former to 20 min for the latter. The stabilization effect on metastable phase II of carbon coated iPB-1 is attributed to a surface fixing effect of the evaporated carbon.
Resumo:
Bisphenol A solid epoxy serves as an effective reaction compatibilizer to the bisphenol A polycarbonate (PC)/PMMA bilayer systems. Addition of epoxy to the bottom PMMA layer can retard or even prevent the dewetting of PC films by introducing crosslinking between both components at the interface. This is the first investigation of polymer bilayers stabilized by chemical reactions.
Resumo:
We demonstrated in this paper an electrospinning technique could be employed to prepare the single layer macroporous films and fibrous networks of poly(vinyl alcohol) (PVA). A crucial element using electrospinning on the development of these electrospun structures was to shorten the distance of from the needle tip to the collector (L), which resulted in the bond of the wet fibers deposited on the collector at the junctions. The morphologies and average pore size of electrospun structures of PVA were mainly predominated by L and the time of collecting wet fibers on the collector. In addition, experimental results showed that an increase of the PVA concentration or a decrease of the applied voltage could also diminish slightly the average pore size of electrospun productions. Furthermore, a 60 degrees C absolute ethanol soak to PVA electrospun production led them to be able to stabilize in water for 1 month against disintegration. Differential scanning calorimetry (DSC) demonstrated that the 60 degrees C ethanol soak enhanced the degree of crystallinity of PVA production. The structural characteristic of macroporous films and networks in combination with their easy processability suggests potential utility in issue engineering applications.
Resumo:
本文考虑了由2个全方位移动机器人组成的混合动力学系统的协调拟镇定问题.利用机器人位置之间的向量与机器人目标之间向量的内积,设计了多步拟镇定律,该控制律能够在避碰后按指数速率运动到目标点,且在整个过程中两机器人之间的距离不小于避碰的安全距离.最后对2个全方位移动机器人进行了仿真,验证了所给方法的有效性。
Resumo:
The sliding mode approach and the multi-step control strategy are exploited to propose a stabilizing controller for uncertain nonholonomic dynamic systems with bounded inputs. This controller can stabilize the system to an arbitrarily small neighborhood about its equilibrium in a finite time .Its application to a nonholonomic wheeled mobile robot is described. Simulation result shows that the proposed controller is effective
Resumo:
Development of functional foods with bioactive components requires component stability in foods and ingredients. Stabilization of sensitive bioactive components can be achieved by entrapment or encapsulation of these components in solid food matrices. Lactose or trehalose was used as the structure-forming material for the entrapment of hydrophilic ascorbic acid and thiamine hydrochloride or the encapsulation of oil particles containing hydrophobic α-tocopherol. In the delivery of hydrophobic components, milk protein isolate, soy protein isolate, or whey protein isolate were used as emulsifiers and, in some cases, applied in excess amount to form matrices together with sugars. Dehydrated amorphous structures with bioactives were produced by freezing and freeze-drying. Experimental results indicated that: (i) lactose and trehalose showed similar water sorption and glass transition but very different crystallization behavior as pure sugars; (ii) the glass transition of sugar-based systems was slightly affected by the presence of other components in anhydrous systems but followed closely that of sugar after water plasticization; (iii) sugar crystallization in mixture systems was composition-dependent; (iv) the stability of bioactives was better retained in the amorphous matrices, although small losses of stability were observed for hydrophilic components above glass transition and for hydrophobic components as a function of water activity; (v) sugar crystallization caused significant loss of hydrophilic bioactives as a result of the exclusion from the continuous crystalline phase; (vi) loss of hydrophobic bioactives upon sugar crystallization was a result of dramatic change of emulsion properties and the exclusion of oil particles from the protecting structure; (vii) the double layers at the hydrophilic-hydrophobic interfaces improved the stability of hydrophobic bioactives in dehydrated systems. The present study provides information on the physical and chemical stability of sugar-based dehydrated delivery systems, which could be helpful in designing foods and ingredients containing bioactive components with improved storage stability.
Resumo:
The efficient remediation of heavy metal-bearing sediment has been one of top priorities of ecosystem protection. Cement-based solidification/stabilization (s/s) is an option for reducing the mobility of heavy metals in the sediment and the subsequent hazard for human beings and animals. This work uses sodium carbonate as an internal carbon source of accelerated carbonation and gaseous CO2 as an external carbon source to overcome deleterious effects of heavy metals on strength development and improve the effectiveness of s/s of heavy metal-bearing sediment. In addition to the compressive strength and porosity measurements, leaching tests followed the Chinese solid waste extraction procedure for leaching toxicity - sulfuric acid and nitric acid method (HJ/T299-2007), German leaching procedure (DIN38414-S4) and US toxicity characteristic leaching procedures (TCLP) have been conducted. The experimental results indicated that the solidified sediment by accelerated carbonation was capable of reaching all performance criteria for the disposal at a Portland cement dosage of 10 wt.% and a solid/water ratio of 1: 1. The concentrations of mercury and other heavy metals in the leachates were below 0.10 mg/L and 5 mg/L, respectively, complying with Chinese regulatory level (GB5085-2007). Compared to the hydration, accelerated carbonation improved the compressive strength of the solidified sediment by more than 100% and reduced leaching concentrations of heavy metals significantly. It is considered that accelerated carbonation technology with a combination of Na2CO3 and CO2 may practically apply to cement-based s/s of heavy metal-bearing sediment. (C) 2008 Elsevier B.V. All rights reserved.