971 resultados para Thermal water


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydrazinium metal chlorides, (N2H5)2MCl4·2H2O (where M = Fe, Co, Ni and Cu), have been prepared from the aqueous solutions of the respective metal chlorides and hydrazine hydrochloride (N2H4·HCl or N2H4·2HCl) and investigated by spectral and thermal analyses. The crystal structure of the iron complex has been determined by direct methods and refined by full-matrix least-squares to an R of 0.023 and Rw of 0.031 for 1495 independent reflections. The structure shows ferrous ion in an octahedral environment bonded by two hydrazinium cations, two chloride anions and two water molecules. In the complex cation [Fe(N2H5)2(H2O)2Cl2]2+, the coordinated groups are in trans positions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two types of cationic cholesteryl amphiphiles, one where the headgroup is attached to the steroid by an ester linkage and the second by an ether linkage, were synthesized. A third type of cholesteryl lipid bearing an oligoethylene glycol segment was also prepared. Each of these synthetic lipids generated vesicle-like aggregates with closed inner aqueous compartments from their aqueous suspensions. We examined their interaction with L-α-dipalmitoyl phosphatidylcholine (DPPC) membranes using fluorescence anisotropy, transmission electron microscopy (TEM), and differential scanning calorimetry (DSC). When included in membranes, the synthetic cholesteryl lipids were found to quench the chain motion of the acyl chains of DPPC. This suggests that these cationic cholesteryl derivatives act as filler molecules despite modification at the headgroup level from the molecular structure of natural cholesterol. Careful analyses of DSC and fluorescence anisotropy data suggest that the nature of perturbation induced by each of these cationic cholesterol derivatives is dependent on the details of their molecular structure and provides significant information on the nature of interaction of these derivatives with phospholipid molecules. In general, amphiphiles that support structured water at the interfacial region tend to rigidify the fluid phase more than others. Importantly, these cholesteryl amphiphiles behave less like cholesterol in that their incorporation in DPPC not only abolishes the phase transition but also depresses the phase transition temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solar distillation can be used to produce potable water from contaminated water. However, studies show that ions such as F(-) and NO(3)(-) occur in distillates from solar stills. In order to understand the reasons for this behavior, imaging and distillation experiments were conducted. White dots were seen in the vapor space above the interface of hot water poured into containers. The concentrations of various ions such as F(-) and SO(4)(2-) in the distillates from thermal and solar distillation experiments were roughly comparable when the feed consisted of deionized water and also solutions having fluoride concentrations of 100 and 10 000 mg/L. These observations suggest that aerosols enter the distillation setup through leaks and provide nuclei for the condensation of water vapor. The water-soluble component of aerosols dissolves in the drops formed, and some of the drops are transferred to the distillate by buoyancy-driven convection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article, we describe our ongoing efforts in addressing the environment and energy challenges facing the world today. Tapping solar thermal energy seems to be the right choice for a country like India. We look at three solar-thermal technologies in the laboratory — water purification/distillation, Stirling engine, and air-conditioning/refrigeration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new Cu(II)-picolinate complex was synthesized and characterized by single crystal X-ray crystallography. The complex crystallizes in the centrosymmetric triclinic space group P (1) over bar (no. 2). Picolinate in the complex extends the neutral unit into a 1-D chain through mu(2)-bridging carboxylate. The complex has a hydrogen bonding acceptor in the second coordination sphere allowing lattice water to assemble neighboring chains. Water self-assembles to form a zig-zag 1-D chain. The adjacent chains are assembled by C-H center dot center dot center dot O interactions result in the formation 2-D hydrogen bonded network. The overall hydrogen bonding between water chain and Cu-picolinate network yields a 3-D hydrogen bonded coordination network. X-ray structural analysis, FTIR and thermal analysis have been used to characterize the reported compound in the solid state.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biodegradable composites comprising of modified starch and modified nanoclay have been prepared. Starch has been modified by esterification and subsequently crosslinked. The thermal, mechanical, and biodegradation characteristics of the composites have been investigated. The compressive properties of the composites with the addition of nanoclay were twice that of crosslinked starch phthalate without addition of nanoclay. Predictive theories were used to analyze the obtained experimental results. SEM studies on fracture morphology indicated quasi-brittle fracture. Flexural properties showed considerable improvement due to nanoclay addition. The water uptake increased up to 6% nanoclay, beyond which the uptake decreased. Biodegradation studies showed an initial time lag prior to the onset of degradation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An analytical solution to describe the transient temperature distribution in a geothermal reservoir in response to injection of cold water is presented. The reservoir is composed of a confined aquifer, sandwiched between rocks of different thermo-geological properties. The heat transport processes considered are advection, longitudinal conduction in the geothermal aquifer, and the conductive heat transfer to the underlying and overlying rocks of different geological properties. The one-dimensional heat transfer equation has been solved using the Laplace transform with the assumption of constant density and thermal properties of both rock and fluid. Two simple solutions are derived afterwards, first neglecting the longitudinal conductive heat transport and then heat transport to confining rocks. Results show that heat loss to the confining rock layers plays a vital role in slowing down the cooling of the reservoir. The influence of some parameters, e.g. the volumetric injection rate, the longitudinal thermal conductivity and the porosity of the porous media, on the transient heat transport phenomenon is judged by observing the variation of the transient temperature distribution with different values of the parameters. The effects of injection rate and thermal conductivity have been found to be profound on the results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reverse osmosis (RO) membranes have been used extensively in water desalination plants, waste water treatment in industries, agricultural farms and drinking water production applications. The objective of this work is to impart antibacterial and antifungal activities to commercially available RO membrane used in water purification systems by incorporating biogenic silver nanoparticles (AgNPs) synthesized using Rosa indica wichuriana hybrid leaf extract. The morphology and surface topography of uncoated and AgNPs-coated RO membrane were studied using Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). Elemental composition of the AgNPs-coated RO membrane was analyzed by energy-dispersive X-ray spectroscopy (EDAX). The functional groups were identified by Fourier Transform Infrared spectroscopy (FT-IR). Hydrophilicity of the uncoated and AgNPs-coated RO membrane was analyzed using water contact angle measurements. The thermal properties were studied by thermogravimetric analysis (TGA). The AgNPs incorporated RO membrane exhibited good antibacterial and antifungal activities against pathogenic bacterial strains such as E. coli, S. aureus, M. luteus, K. pneumoniae, and P. aeruginosa and fungal strains such as Candida tropicalis, C. krusei, C. glabrata, and C. albicans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dual photoluminescence (PL) emission characteristics of Mn2+ doped ZnS (ZnS:Mn) quantum dots (QDs) have drawn a lot of attention recently. However, here we report the effect of thermal annealing on the PL emission characteristics of uncapped ZnS:Mn QDs of average sizes similar to 2-3 nm, synthesized by simple chemical precipitation method by using de-ionized (DI) water at room temperature. As-synthesized samples show dual PL emissions, having one UV PL band centred at similar to 400 nm and the other in the visible region similar to 610 nm. But when the samples are isochronally annealed for 2 h at 100-600 degrees C temperature range in air, similar to 90% quenching of Mn2+ related visible PL emission intensity takes place at the annealing temperature of 600 degrees C. X-ray diffraction data show that the as-synthesized cubic ZnS has been converted to wurtzite ZnO at 600 degrees C annealing temperature. The nanostructural properties of the samples are also determined by transmission electron micrograph, electron probe micro-analyser and UV-vis spectrophotometry. The photocatalytic property of the annealed ZnS:Mn sample has been demonstrated and photo-degradation efficiency of the as-synthesized and 600 degrees C annealed ZnS:Mn sample has been found out to be similar to 35% and similar to 61%, respectively, for the degradation of methylene blue dye under visible light irradiation. The synthesized QDs may find significant applications in future optoelectronic devices. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study, amino-silane modified layered organosilicates were used to reinforce cyclic olefin copolymer to enhance the thermal, mechanical and moisture impermeable barrier properties. The optimum clay loading (4%) in the nanocomposite increases the thermal stability of the film while further loading decreases film stability. Water absorption behavior at 62 degrees C was carried out and compared with the behavior at room temperature and 48 degrees C. The stiffness of the matrix increases with clay content and the recorded strain to failure for the composite films was lower than the neat film. Dynamic mechanical analysis show higher storage modulus and low loss modulus for 2.5-4 wt% clay loading. Calcium degradation test and device encapsulation also show the evidence of optimum clay loading of 4 wt% for improved low water vapor transmission rates compared to other nanocomposite films. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study evaluates the synthesis by solvo-thermal method and electrocatalytic activity of nickel nano-particles encapsulated in hollow carbon sphere, in hydrogen and oxygen evolution reaction in PEM water electrolyzer. The XRD patterns have ascertained the formation of nickel metal with different planes in face centered cubic (fcc) and hexagonal closed pack (hcp) form. SEM and TEM images have confirmed the nickel nano-particles with diameter of 10-50 nm inside the 0.2 mu m sized hollow carbon spheres. The BET surface area values gradually decreased with greater encapsulation of nickel; although the electrochemical active surface area (ECSA) values have been calculated as quite higher. It confirms the well dispersion of nickel in the materials and induces their electrocatalytic performance through the active surface sites. The cyclic voltammetric studies have evaluated hydrogen desorption peaks as five times more intense in nickel encapsulated materials, in comparison to the pure hollow carbon spheres. The anodic peak current density value has reached the highest level of 1.9 A cm(-2) for HCSNi10, which gradually decreases with lesser amount of nickel in the electrocatalysts. These electrocatalysts have been proved electrochemically stable during their usage for 48 h long duration under potentiostatic condition. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photocatalytic degradation of estriol (E3) in an aqueous medium was investigated in the presence of TiO2 microcrystallized glass plates. To begin with, transparent glasses associated with the composition 0.4BaO-0.4TiO(2)-B2O3 (BTBO) were fabricated by the conventional melt-quench technique and subsequently subjected to controlled heat treatment at an appropriate temperature to grow anatase TiO2 microcrystals in the glass matrix. The fabricated samples were subjected to differential scanning calorimetry. X-ray diffraction and scanning electron microscopy to obtain thermal, structural and microstructural details. The photocatalytic activity of glass samples for estriol degradation was monitored by fluorescence spectroscopy. The limit of detection for estriol using fluorescence spectroscopy was analyzed. The results showed that microcrystallized TiO2 glass composites have more photocatalytic activity than as quenched glass. The degradation rate coefficient of microcrystallized TiO2 glass composite (334.54 min(-1) m(-2)) was found to be ten times larger than that of the as-quenched BTBO glasses (37.74 min(-1) m(-2)) implying that the anatase phase of TiO2 in BTBO glasses was responsible for high photocatalytic activity of estriol degradation. (c) 2014 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Poly(vinyl butyral) - MMT clay nanocomposites were synthesized in situ with three different degrees of acetalization and with varying clay content for each vinyl butyral polymer ratio. The clay nano-platelet galleries were expanded, as determined by X-ray diffraction and TEM analysis. The glass transition temperature of the polymer nanocomposites were found to be similar to 56 degrees C and similar to 52 degrees C for the neat polymer and the 4% clay loaded samples, respectively. The 4 wt% clay loaded film showed higher strength and low strain to failure. The dynamic mechanical analysis also confirmed the improved stability of the matrix. The matrix with 0.5 butyral to alcohol ratio for 4 wt% clay exhibited good water vapor transmission compared to all other compositions. The encapsulated devices with 2.5 and 4 wt% clay loaded films increases the device life time and the efficiencies of these films were 50% higher than their encapsulated pristine polymer films. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polyurethane foams with multimodal cell distribution exhibit superior mechanical and thermal properties. A technique for generating bimodal bubble size distribution exists in the literature, but it uses supercritical conditions. In the present work, an alternative based on milder operating conditions is proposed. It is a modification of reaction injection molding (RIM), using reactants already seeded with bubbles. The number density of the seeds determines if two nucleating events can occur. A bimodal bubble size distribution is obtained when this happens A mathematical model is used to test this hypothesis by simulating water blown free rise polyurethane foams. The effects of initial concentration of bubbles, temperature of the reactants, and the weight fraction of water are studied. The study reveals that for certain concentrations of initial number of bubbles, when initial temperature and weight fraction of water are high, it is possible to obtain a second nucleation event, leading to bimodal bubble size distribution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The first objective of this paper is to show that a single-stage adsorption based cooling-cum-desalination system cannot be used if air cooled heat rejection is used under tropical conditions. This objective is achieved by operating a silica gel + water adsorption chiller first in a single-stage mode and then in a 2-stage mode with 2 beds/stage in each case. The second objective is to improve upon the simulation results obtained earlier by way of empirically describing the thermal wave phenomena during switching of operation of beds between adsorption and desorption and vice versa. Performance indicators, namely, cooling capacity, coefficient of performance and desalinated water output are extracted for various evaporator pressures and half cycle times. The improved simulation model is found to interpret experimental results more closely than the earlier one. Reasons for decline in performance indicators between theoretical and actual scenarios are appraised. (C) 2015 Elsevier Ltd and IIR. All rights reserved.