966 resultados para Thermal model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The microwave and thermal cure processes for the epoxy-amine systems N,N,N',N'-tetraglycidyl-4,4'-diaminodiphenyl methane (TGDDM) with diaminodiphenyl sulfone (DDS) and diaminodiphenyl methane (DDM) have been investigated. The DDS system was studied at a single cure temperature of 433 K and a single stoichiometry of 27 wt% and the DDM system was studied at two stoichiometries, 19 and 32 wt%, and a range temperatures between 373 and 413 K. The best values the kinetic rate parameters for the consumption of amines have been determined by a least squares curve Ft to a model for epoxy-amine cure. The activation energies for the rate parameters for the MY721/DDM system were determined as was the overall activation energy for the cure reaction which was found to be 62 kJ mol(-1). No evidence was found for any specific effect of the microwave radiation on the rate parameters, and the systems were both found to be characterized by a negative substitution effect. Copyright (C) 2001 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The microwave and thermal cure processes for the epoxy-amine systems (epoxy resin diglycidyl ether of bisphenol A, DGEBA) with 4,4'-diaminodiphenyl sulphone (DDS) and 4,4'-diaminodiphenyl methane (DDM) have been investigated for 1:1 stoichiometries by using fiber-optic FT-NIR spectroscopy. The DGEBA used was in the form of Ciba-Geigy GY260 resin. The DDM system was studied at a single cure temperature of 373 K and a single stoichiometry of 20.94 wt% and the DDS system was studied at a stoichiometry of 24.9 wt% and a range of temperatures between 393 and 443 K. The best values of the kinetic rate parameters for the consumption of amines have been determined by a least squares curve fit to a model for epoxy/amine cure. The activation energies for the polymerization of the DGEBA/DDS system were determined for both cure processes and found to be 66 and 69 kJ mol(-1) for the microwave and thermal cure processes, respectively. No evidence was found for any specific effect of the microwave radiation on the rate parameters, and the systems were both found to be characterized by a negative substitution effect. Copyright (C) 2002 John Wiley Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we analyzed the adsorption of gases and vapors on graphitised thermal carbon black by using a modified DFT-lattice theory, in which we assume that the behavior of the first layer in the adsorption film is different from those of second and higher layers. The effects of various parameters on the topology of the adsorption isotherm were first investigated, and the model was then applied in the analysis of adsorption data of numerous substances on carbon black. We have found that the first layer in the adsorption film behaves differently from the second and higher layers in such a way that the adsorbate-adsorbate interaction energy in the first layer is less than that of second and higher layers, and the same is observed for the partition function. Furthermore, the adsorbate-adsorbate and adsorbate-adsorbent interaction energies obtained from the fitting are consistently lower than the corresponding values obtained from the viscosity data and calculated from the Lorentz-Berthelot rule, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Viewed on a hydrodynamic scale, flames in experiments are often thin so that they may be described as gasdynamic discontinuities separating the dense cold fresh mixture from the light hot burned products. The original model of a flame as a gasdynamic discontinuity was due to Darrieus and to Landau. In addition to the fluid dynamical equations, the model consists of a flame speed relation describing the evolution of the discontinuity surface, and jump conditions across the surface which relate the fluid variables on the two sides of the surface. The Darrieus-Landau model predicts, in contrast to observations, that a uniformly propagating planar flame is absolutely unstable and that the strength of the instability grows with increasing perturbation wavenumber so that there is no high-wavenumber cutoff of the instability. The model was modified by Markstein to exhibit a high-wavenumber cutoff if a phenomenological constant in the model has an appropriate sign. Both models are postulated, rather than derived from first principles, and both ignore the flame structure, which depends on chemical kinetics and transport processes within the flame. At present, there are two models which have been derived, rather than postulated, and which are valid in two non-overlapping regions of parameter space. Sivashinsky derived a generalization of the Darrieus-Landau model which is valid for Lewis numbers (ratio of thermal diffusivity to mass diffusivity of the deficient reaction component) bounded away from unity. Matalon & Matkowsky derived a model valid for Lewis numbers close to unity. Each model has its own advantages and disadvantages. Under appropriate conditions the Matalon-Matkowsky model exhibits a high-wavenumber cutoff of the Darrieus-Landau instability. However, since the Lewis numbers considered lie too close to unity, the Matalon-Matkowsky model does not capture the pulsating instability. The Sivashinsky model does capture the pulsating instability, but does not exhibit its high-wavenumber cutoff. In this paper, we derive a model consisting of a new flame speed relation and new jump conditions, which is valid for arbitrary Lewis numbers. It captures the pulsating instability and exhibits the high-wavenumber cutoff of all instabilities. The flame speed relation includes the effect of short wavelengths, not previously considered, which leads to stabilizing transverse surface diffusion terms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A bituminous coal was pyrolyzed in a nitrogen stream in an entrained flow reactor at various temperatures from 700 to 1475 degreesC. Char samples were collected at different positions along the reactor. Each collected sample was oxidized nonisothermally in a TGA for reactivity determination. The reactivity of the coal char was found to decrease rapidly with residence time until 0.5 s, after which it decreased only slightly. On the bases of the reactivity data at various temperatures, a new approach was utilized to obtaining the true activation energy distribution function for thermal annealing without the assumption of any distribution function form or a constant preexponential factor. It appears that the true activation energy distribution function consists of two separate parts corresponding to different temperature ranges, suggesting different mechanisms in different temperature ranges. Partially burnt coal chars were also collected along the reactor when the coal was oxidized in air at various temperatures from 700 to 1475 degreesC. The collected samples were analyzed for the residual carbon content and the specific reaction rate was estimated. The characteristic time of thermal deactivation was compared with that of oxidation under realistic conditions. The characteristic times were found to be close to each other, indicating the importance of thermal deactivation during combustion of the coal studied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermal degradation of as electrospun chitosan membranes and samples subsequently treated with ethanol and cross-linked with glutaraldehyde (GA) have been studied by thermogravimetry (TG) coupled with an infrared spectrometer (FTIR). The influence of the electrospinning process and cross-linking in the electrospun chitosan thermal stability was evaluated. Up to three degradation steps were observed in the TG data, corresponding to water dehydration reaction at temperatures below 100 ºC, loss of side groups formed between the amine groups of chitosan and trifluoroacetic acid between 150 – 270 ºC and chitosan thermal degradation that starts around 250 ºC and goes up to 400 ºC. The Kissinger model was employed to evaluate the activation energies of the electrospun membranes during isothermal experiments and revealed that thermal degradation activation energy increases for the samples processed by electrospinning and subsequent neutralization and cross-linking treatments with respect to the neat chitosan powder.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a distributed model predictive control (DMPC) for indoor thermal comfort that simultaneously optimizes the consumption of a limited shared energy resource. The control objective of each subsystem is to minimize the heating/cooling energy cost while maintaining the indoor temperature and used power inside bounds. In a distributed coordinated environment, the control uses multiple dynamically decoupled agents (one for each subsystem/house) aiming to achieve satisfaction of coupling constraints. According to the hourly power demand profile, each house assigns a priority level that indicates how much is willing to bid in auction for consume the limited clean resource. This procedure allows the bidding value vary hourly and consequently, the agents order to access to the clean energy also varies. Despite of power constraints, all houses have also thermal comfort constraints that must be fulfilled. The system is simulated with several houses in a distributed environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Energia

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coastal low-level jets (CLLJ) are a low-tropospheric wind feature driven by the pressure gradient produced by a sharp contrast between high temperatures over land and lower temperatures over the sea. This contrast between the cold ocean and the warm land in the summer is intensified by the impact of the coastal parallel winds on the ocean generating upwelling currents, sharpening the temperature gradient close to the coast and giving rise to strong baroclinic structures at the coast. During summertime, the Iberian Peninsula is often under the effect of the Azores High and of a thermal low pressure system inland, leading to a seasonal wind, in the west coast, called the Nortada (northerly wind). This study presents a regional climatology of the CLLJ off the west coast of the Iberian Peninsula, based on a 9km resolution downscaling dataset, produced using the Weather Research and Forecasting (WRF) mesoscale model, forced by 19 years of ERA-Interim reanalysis (1989-2007). The simulation results show that the jet hourly frequency of occurrence in the summer is above 30% and decreases to about 10% during spring and autumn. The monthly frequencies of occurrence can reach higher values, around 40% in summer months, and reveal large inter-annual variability in all three seasons. In the summer, at a daily base, the CLLJ is present in almost 70% of the days. The CLLJ wind direction is mostly from north-northeasterly and occurs more persistently in three areas where the interaction of the jet flow with local capes and headlands is more pronounced. The coastal jets in this area occur at heights between 300 and 400 m, and its speed has a mean around 15 m/s, reaching maximum speeds of 25 m/s.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many-core platforms are an emerging technology in the real-time embedded domain. These devices offer various options for power savings, cost reductions and contribute to the overall system flexibility, however, issues such as unpredictability, scalability and analysis pessimism are serious challenges to their integration into the aforementioned area. The focus of this work is on many-core platforms using a limited migrative model (LMM). LMM is an approach based on the fundamental concepts of the multi-kernel paradigm, which is a promising step towards scalable and predictable many-cores. In this work, we formulate the problem of real-time application mapping on a many-core platform using LMM, and propose a three-stage method to solve it. An extended version of the existing analysis is used to assure that derived mappings (i) guarantee the fulfilment of timing constraints posed on worst-case communication delays of individual applications, and (ii) provide an environment to perform load balancing for e.g. energy/thermal management, fault tolerance and/or performance reasons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Química e Bioquímica

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertation to obtain the degree of Doctor of Philosophy in Biomedical Engineering

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the projection of an increasing world population, hand-in-hand with a journey towards a bigger number of developed countries, further demand on basic chemical building blocks, as ethylene and propylene, has to be properly addressed in the next decades. The methanol-to-olefins (MTO) is an interesting reaction to produce those alkenes using coal, gas or alternative sources, like biomass, through syngas as a source for the production of methanol. This technology has been widely applied since 1985 and most of the processes are making use of zeolites as catalysts, particularly ZSM-5. Although its selectivity is not especially biased over light olefins, it resists to a quick deactivation by coke deposition, making it quite attractive when it comes to industrial environments; nevertheless, this is a highly exothermic reaction, which is hard to control and to anticipate problems, such as temperature runaways or hot-spots, inside the catalytic bed. The main focus of this project is to study those temperature effects, by addressing both experimental, where the catalytic performance and the temperature profiles are studied, and modelling fronts, which consists in a five step strategy to predict the weight fractions and activity. The mind-set of catalytic testing is present in all the developed assays. It was verified that the selectivity towards light olefins increases with temperature, although this also leads to a much faster catalyst deactivation. To oppose this effect, experiments were carried using a diluted bed, having been able to increase the catalyst lifetime between 32% and 47%. Additionally, experiments with three thermocouples placed inside the catalytic bed were performed, analysing the deactivation wave and the peaks of temperature throughout the bed. Regeneration was done between consecutive runs and it was concluded that this action can be a powerful means to increase the catalyst lifetime, maintaining a constant selectivity towards light olefins, by losing acid strength in a steam stabilised zeolitic structure. On the other hand, developments on the other approach lead to the construction of a raw basic model, able to predict weight fractions, that should be tuned to be a tool for deactivation and temperature profiles prediction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solar passive strategies that have been developed in vernacular architecture from different regions are a response to specific climate effects. These strategies are usually simple, low-tech and have low potential environmental impact. For this reason, several studies highlight them as having potential to reduce the demands of non-renewable energy for buildings operation. In this paper, the climatic contrast between northern and southern parts of mainland Portugal is presented, namely the regions of Beira Alta and Alentejo. Additionally, it discusses the contribution of different climate-responsive strategies developed in vernacular architecture from both regions to assure thermal comfort conditions. In Beira Alta, the use of glazed balconies as a strategy to capture solar gains is usual, while in Alentejo the focus is on passive cooling strategies. To understand the effectiveness of these strategies, thermal performances and comfort conditions of two case studies were evaluated based on the adaptive comfort model. Field tests included measurement of hygrothermal parameters and surveys on occupants’ thermal sensation. From the results, it has been found that the case studies have shown a good thermal performance by passive means alone and that the occupants feel comfortable, except during winter where there is the need to use simple heating systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we present the thermal characterization of the full scope of polyhydroxyalcanoate and poly(lactic acid) blends obtain by injection molding. Blends of polyhydroxyalcanoate and poly(lactic acid) (PHA/PLA) were prepared in different compositions ranging from 0–100% in steps of 10%. The blends were injection molded and then characterized by differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and wide angle X-ray diffraction (WAXD). The increment of PHA fraction increased the degree of crystallinity of the blend and the miscibility of the base polymers as verified by the Fox model. The WAXD analysis indicates that the presence of PHA hindered the PLA crystallization. The crystallization evolution trough PHA weight fraction (wf) shows a phase inversion around 50-60%. SEM analyses confirmed that the miscibility of PHA/PLA blends increased with the incorporation of PHA and became total for values of PHA higher that 50%.