986 resultados para Thermal electric polarization


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solar energy is the most abundant persistent energy resource. It is also an intermittent one available for only a fraction of each day while the demand for electric power never ceases. To produce a significant amount of power at the utility scale, electricity generated from solar energy must be dispatchable and able to be supplied in response to variations in demand. This requires energy storage that serves to decouple the intermittent solar resource from the load and enables around-the-clock power production from solar energy. Practically, solar energy storage technologies must be efficient as any energy loss results in an increase in the amount of required collection hardware, the largest cost in a solar electric power system. Storing solar energy as heat has been shown to be an efficient, scalable, and relatively low-cost approach to providing dispatchable solar electricity. Concentrating solar power systems that include thermal energy storage (TES) use mirrors to focus sunlight onto a heat exchanger where it is converted to thermal energy that is carried away by a heat transfer fluid and used to drive a conventional thermal power cycle (e.g., steam power plant), or stored for later use. Several approaches to TES have been developed and can generally be categorized as either thermophysical (wherein energy is stored in a hot fluid or solid medium or by causing a phase change that can later be reversed to release heat) or thermochemical (in which energy is stored in chemical bonds requiring two or more reversible chemical reactions).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Energy crisis and worldwide environmental problem make hydrogen a prospective energy carrier. However, storage and transportation of hydrogen in large quantities at small volume is currently not practical. Lots of materials and devices have been developed for storage hydrogen, but to today none is able to meet the DOE targets. Activated carbon has been found to be a good hydrogen adsorbent due to its high surface area. However, the weak van der Waals force between hydrogen and the adsorbent has limited the adsorption capacity. Previous studies have found that enhanced adsorption can be obtained with applied electric field. Stronger interaction between the polarized hydrogen and the charged sorbents under high voltage is considered as the reason. This study was initiated to investigate if the adsorption can be further enhanced when the activated carbon particles are separated with a dielectric coating. Dielectric TiO2 nanoparticles were first utilized. Hydrogen adsorption measurements on the TiO2-coated carbon materials, with or without an external electric field, were made. The results showed that the adsorption capacity enhancement increased with the increasing amount of TiO2 nanoparticles with an applied electric field. Since the hydrogen adsorption capacity on TiO2 particles is very low and there is no hydrogen adsorption enhancement on TiO2 particles alone when electric field is applied, the effect of dielectric coating is demonstrated. Another set of experiments investigated the behavior of hydrogen adsorption over TiO2-coated activated carbon under various electric potentials. The results revealed that the hydrogen adsorption first increased and then decreased with the increase of electric field. The improved storage was due to a stronger interaction between charged carbon surface and polarized hydrogen molecule caused by field induced polarization of TiO2 coating. When the electric field was sufficient to cause considerable ionization of hydrogen, the decrease of hydrogen adsorption occurred. The current leak detected at 3000 V was a sign of ionization of hydrogen. Experiments were also carried out to examine the hydrogen adsorption performances over activated carbon separated by other dielectric materials, MgO, ZnO and BaTiO3, respectively. For the samples partitioned with MgO and ZnO, the measurements with and without an electric field indicated negligible differences. Electric field enhanced adsorption has been observed on the activated carbon separated with BaTiO3, a material with unusually high dielectric constant. Corresponding computational calculations using Density Functional Theory have been performed on hydrogen interaction with charged TiO2 molecule as well as TiO2 molecule, coronene and TiO2-doped coronene in the presence of an electric field. The simulated results were consistent with the observations from experiments, further confirming the proposed hypotheses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of a strong, high‐frequency electric field on the ion‐ion correlations in a fully ionized plasma is investigated in the limit of infinite ion mass, starting with the Bogoliubov‐Born‐Green‐Kirkwood‐Yvon hierarchy of equations; a significant departure from the thermal correlations is found. It is shown that the above effect may substantially modify earlier results on the nonlinear high‐frequency plasma conductivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The simulation of design basis accidents in a containment building is usually conducted with a lumped parameter model. The codes normally used by Westinghouse Electric Company (WEC) for that license analysis are WGOTHIC or COCO, which are suitable to provide an adequate estimation of the overall peak temperature and pressure of the containment. However, for the detailed study of the thermal-hydraulic behavior in every room and compartment of the containment building, it could be more convenient to model the containment with a more detailed 3D representation of the geometry of the whole building. The main objective of this project is to obtain a standard PWR Westinghouse as well as an AP1000® containment model for a CFD code to analyze the thermal-hydraulic detailed behavior during a design basis accident. In this paper the development and testing of both containment models is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method for the study of the control of the attainment of thermal acclimation has been applied to the crabs, Cancer pagurus and Carcinus maenas. Crabs were heterothermally acclimated by using an anterior–posterior partition between two compartments, one at 8°C and the other at 22°C. One compartment held a three-quarter section of the crab including the central nervous system (CNS), eye stalks, and ipsilateral legs; the other held a quarter section including the contralateral legs. Criteria used to assess the acclimation responses were comparisons of muscle plasma membrane fatty acid composition and “fluidity.” In both species, the major fatty acids of phosphatidylcholine were 16:0, 18:1, 20:5, and 22:6, whereas phosphatidylethanolamine contained significantly less 16:0 but more 18:0; these fatty acids comprised 80% of the total. Differences in fatty acid composition were demonstrated between fractions obtained from the ipsilateral and contralateral legs from the same heterothermally acclimated individual. In all acclimation states (except 22CNS, phosphatidylcholine fraction), membrane lipid saturation was significantly increased with acclimation at 22° as compared with 8°C. Membrane fluidity was determined by using 1,3-diphenyl-1,3,5 hexatriene (DPH) fluorescence polarization. In both species, membranes from legs held at 8° were more fluid than from legs held at 22°C irrespective of the acclimation temperature of the CNS. Heterothermal acclimation demonstrated that leg muscle membrane composition and fluidity respond primarily to local temperature and were not predominately under central direction. The responses between 8°C- and 22°C-acclimated legs were more pronounced when the CNS was cold-acclimated, so a central influence cannot be excluded.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Classical molecular dynamics is applied to the rotation of a dipolar molecular rotor mounted on a square grid and driven by rotating electric field E(ν) at T ≃ 150 K. The rotor is a complex of Re with two substituted o-phenanthrolines, one positively and one negatively charged, attached to an axial position of Rh\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{2}^{4+}}}\end{equation*}\end{document} in a [2]staffanedicarboxylate grid through 2-(3-cyanobicyclo[1.1.1]pent-1-yl)malonic dialdehyde. Four regimes are characterized by a, the average lag per turn: (i) synchronous (a < 1/e) at E(ν) = |E(ν)| > Ec(ν) [Ec(ν) is the critical field strength], (ii) asynchronous (1/e < a < 1) at Ec(ν) > E(ν) > Ebo(ν) > kT/μ, [Ebo(ν) is the break-off field strength], (iii) random driven (a ≃ 1) at Ebo(ν) > E(ν) > kT/μ, and (iv) random thermal (a ≃ 1) at kT/μ > E(ν). A fifth regime, (v) strongly hindered, W > kT, Eμ, (W is the rotational barrier), has not been examined. We find Ebo(ν)/kVcm−1 ≃ (kT/μ)/kVcm−1 + 0.13(ν/GHz)1.9 and Ec(ν)/kVcm−1 ≃ (2.3kT/μ)/kVcm−1 + 0.87(ν/GHz)1.6. For ν > 40 GHz, the rotor behaves as a macroscopic body with a friction constant proportional to frequency, η/eVps ≃ 1.14 ν/THz, and for ν < 20 GHz, it exhibits a uniquely molecular behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oscillating electric fields can be rectified by proteins in cell membranes to give rise to a dc transport of a substance across the membrane or a net conversion of a substrate to a product. This provides a basis for signal averaging and may be important for understanding the effects of weak extremely low frequency (ELF) electric fields on cellular systems. We consider the limits imposed by thermal and "excess" biological noise on the magnitude and exposure duration of such electric field-induced membrane activity. Under certain circumstances, the excess noise leads to an increase in the signal-to-noise ratio in a manner similar to processes labeled "stochastic resonance." Numerical results indicate that it is difficult to reconcile biological effects with low field strengths.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to protect critical military and commercial space assets, the United States Space Surveillance Network must have the ability to positively identify and characterize all space objects. Unfortunately, positive identification and characterization of space objects is a manual and labor intensive process today since even large telescopes cannot provide resolved images of most space objects. Since resolved images of geosynchronous satellites are not technically feasible with current technology, another method of distinguishing space objects was explored that exploits the polarization signature from unresolved images. The objective of this study was to collect and analyze visible-spectrum polarization data from unresolved images of geosynchronous satellites taken over various solar phase angles. Different collection geometries were used to evaluate the polarization contribution of solar arrays, thermal control materials, antennas, and the satellite bus as the solar phase angle changed. Since materials on space objects age due to the space environment, it was postulated that their polarization signature may change enough to allow discrimination of identical satellites launched at different times. The instrumentation used in this experiment was a United States Air Force Academy (USAFA) Department of Physics system that consists of a 20-inch Ritchey-Chrétien telescope and a dual focal plane optical train fed with a polarizing beam splitter. A rigorous calibration of the system was performed that included corrections for pixel bias, dark current, and response. Additionally, the two channel polarimeter was calibrated by experimentally determining the Mueller matrix for the system and relating image intensity at the two cameras to Stokes parameters S0 and S1. After the system calibration, polarization data was collected during three nights on eight geosynchronous satellites built by various manufacturers and launched several years apart. Three pairs of the eight satellites were identical buses to determine if identical buses could be correctly differentiated. When Stokes parameters were plotted against time and solar phase angle, the data indicates that there were distinguishing features in S0 (total intensity) and S1 (linear polarization) that may lead to positive identification or classification of each satellite.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solar heating of potable water has traditionally been accomplished through the use of solar thermal (ST) collectors. With the recent increases in availability and lower cost of photovoltaic (PV) panels, the potential of coupling PV solar arrays to electrically heated domestic hot water (DHW) tanks has been considered. Additionally, innovations in the SDHW industry have led to the creation of photovoltaic/thermal (PV/T) collectors, which heat water using both electrical and thermal energy. The current work compared the performance and cost-effectiveness of a traditional solar thermal (ST) DHW system to PV-solar-electric DHW systems and a PV/T DHW system. To accomplish this, a detailed TRNSYS model of the solar hot water systems was created and annual simulations were performed for 250 L/day and 325 L/day loads in Toronto, Vancouver, Montreal, Halifax, and Calgary. It was shown that when considering thermal performance, PV-DHW systems were not competitive when compared to ST-DHW and PVT-DHW systems. As an example, for Toronto the simulated annual solar fractions of PV-DHW systems were approximately 30%, while the ST-DHW and PVT-DHW systems achieved 65% and 71% respectively. With current manufacturing and system costs, the PV-DHW system was the most cost-effective system for domestic purposes. The capital cost of the PV-DHW systems were approximately $1,923-$2,178 depending on the system configuration, and the ST-DHW and PVT system were estimated to have a capital cost of $2,288 and $2,373 respectively. Although the capital cost of the PVT-DHW system was higher than the other systems, a Present Worth analysis for a 20-year period showed that for a 250 L/day load in Toronto the Present Worth of the PV/T system was approximately $4,597, with PV-DHW systems costing approximately $7,683-$7,816 and the ST-DHW system costing $5,238.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"RME-3156."

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"Contract AT-30-1-Gen-366."

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of reliable, high powered plasma generators has resulted in many plasma processes being proposed as alternatives to existing pyrometallurgical technologies. This work evaluates the advantages and disadvantages of plasma systems by reviewing plasma generators, their integration with reactors and the process economics. Many plasma systems were shown to be technically and economically superior to existing technologies, but some of the plasma system advantages quoted in the literature were found to be impractical because of other system constraints. Process applications were limited by the power inputs available from plasma generators compared to AC electric furnaces. A series of trials were conducted where chromite and steelplant baghouse dusts were smelted in the Tetronics' 2.0 MW transferred arc/open bath reactor to confirm the operating characteristics of the plasma system and its economics. Chromite smelting was technical superior to submerged arc furnace technology, but the economics were unfavourable because of the limited power available from the water-cooled plasma torch and the high electrical energy consumption. A DC graphite electrode plasma furnace using preheated and prereduced chromite concentrates will compete economically with the submerged arc furnace. Ni, Cr and Mo were economically recovered from high alloy content steelplant dusts for recycling. Five Electric Arc Furnace dusts were smelted to produce a non-toxic residue and recover the contained zinc to an enriched zinc oxide product for recycling. It should be possible to condense the zinc vapour directly in a zinc splash condenser to increase the value of the product. Because of the limited power available from plasma generators, plasma processes will be most suitable for treating high and medium value materials such as Au, Pt, Mo, Ni, Ti, V, Cr etc at small production rates, heating metals in tundishes and ladles and remelting superalloy scrap. The treatment of environmentally hazardous waste materials is a particularly interesting application because of the additional financial incentives. Non-transferred arc plasma generators will be used for air and gas preheating in blast furnaces to reduce metallurgical coke consumptions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have UV-inscribed and theoretically and experimentally analyzed fiber gratings with the structure tilted at 45° and implemented this type of devices as an in-fiber polarizer. A systematic investigation has been carried out on the characterization of 45° tilted fiber gratings (45° TFGs) in terms of the polarization-dependant loss (PDL) and thermal response. The detailed theoretical modeling has revealed a linear correlation between the grating length and the PDL, which has been proved by the experimental results. For the first time, we have examined the UV beam diffraction from a tilted phase mask and designed the UV-inscription system to suit the 45° TFG fabrication. Experimentally, a 24 mm long 45° TFG UV-inscribed in standard telecom single-mode fiber exhibited around 25 dB PDL at 1530 nm and an over ~300 nm bandwidth of PDL spectrum. By the concatenation method, a 44 mm long grating showed a PDL as high as 40 dB that is close to the high polarization extinction ratio of commercial products. Moreover, we have revealed that the PDL of 45° TFGs has low thermal influence, which is desirable for real application devices. Finally, we experimentally demonstrated an all-fiber twist sensor system based on a 45° and an 81° TFG.