946 resultados para Thermal dissipation method


Relevância:

40.00% 40.00%

Publicador:

Resumo:

A method of estimating dissipation rates from a vertically pointing Doppler lidar with high temporal and spatial resolution has been evaluated by comparison with independent measurements derived from a balloon-borne sonic anemometer. This method utilizes the variance of the mean Doppler velocity from a number of sequential samples and requires an estimate of the horizontal wind speed. The noise contribution to the variance can be estimated from the observed signal-to-noise ratio and removed where appropriate. The relative size of the noise variance to the observed variance provides a measure of the confidence in the retrieval. Comparison with in situ dissipation rates derived from the balloon-borne sonic anemometer reveal that this particular Doppler lidar is capable of retrieving dissipation rates over a range of at least three orders of magnitude. This method is most suitable for retrieval of dissipation rates within the convective well-mixed boundary layer where the scales of motion that the Doppler lidar probes remain well within the inertial subrange. Caution must be applied when estimating dissipation rates in more quiescent conditions. For the particular Doppler lidar described here, the selection of suitably short integration times will permit this method to be applicable in such situations but at the expense of accuracy in the Doppler velocity estimates. The two case studies presented here suggest that, with profiles every 4 s, reliable estimates of ϵ can be derived to within at least an order of magnitude throughout almost all of the lowest 2 km and, in the convective boundary layer, to within 50%. Increasing the integration time for individual profiles to 30 s can improve the accuracy substantially but potentially confines retrievals to within the convective boundary layer. Therefore, optimization of certain instrument parameters may be required for specific implementations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The adaptive thermal comfort theory considers people as active rather than passive recipients in response to ambient physical thermal stimuli, in contrast with conventional, heat-balance-based, thermal comfort theory. Occupants actively interact with the environments they occupy by means of utilizing adaptations in terms of physiological, behavioural and psychological dimensions to achieve ‘real world’ thermal comfort. This paper introduces a method of quantifying the physiological, behavioural and psychological portions of the adaptation process by using the analytic hierarchy process (AHP) based on the case studies conducted in the UK and China. Apart from three categories of adaptations which are viewed as criteria, six possible alternatives are considered: physiological indices/health status, the indoor environment, the outdoor environment, personal physical factors, environmental control and thermal expectation. With the AHP technique, all the above-mentioned criteria, factors and corresponding elements are arranged in a hierarchy tree and quantified by using a series of pair-wise judgements. A sensitivity analysis is carried out to improve the quality of these results. The proposed quantitative weighting method provides researchers with opportunities to better understand the adaptive mechanisms and reveal the significance of each category for the achievement of adaptive thermal comfort.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Despite the many existing crosslinking procedures, glutaraldehyde (GA) is still the method of choice used in the manufacture of bioprosthesis. The major problems with GA are: (a) uncontrolled reactivity due to the chemical complexity or GA solutions; (b) toxicity due to the release of GA from polymeric crosslinks; and (c) tissue impermeabilization due to polymeric and heterogeneous crosslinks formation, partially responsible for the undesirable calcification of the bioprosthesis. A new method of crosslinking glutaraldehyde acetals has been developed with GA in acid ethanolic solution, and after the distribution inside de matrix, GA is released to crosslinking. Concentrations of hydrochloride acid in ethanolic solutions between 0.1 and 0.001 mol/L with GA concentration between 0.1 and 1.0% were measured in an ultraviolet spectrophotometer to verify the presence of free aldehyde groups and polymeric compounds of GA. After these measurements, the solutions were used to crosslink bovine pericardium. The spectrophotometric results showed that GA was better protected in acetal forms for acid ethanolic solution with HCl at 0.003 mol/L and GA 1.0%(v/v). The shrinkage temperature results of bovine pericardium crosslinked with acetal solutions showed values near 85 C after the exposure to triethylamine vapors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Co(II)-diclofenac complex was evaluated by simultaneous thermogravimetry-differential thermal analysis (TG-DTA) and differential scanning calorimetry (DSC). The DTA curve profile shows one exothermic peak because of the transition phase of the compound between 170 and 180 A degrees C, which was confirmed by X-ray powder diffractometry. The transition phase behavior was studied by DSC curves at several heating rates of a sample mass between 1 and 10 mg in nitrogen atmosphere and in a crucible with and without a lid. Thus, the kinetic parameters were evaluated using an isoconversional non-linear fitting proposed by Capela and Ribeiro. The results show that the activation energy and pre-exponential factor for the transition phase is dependant on the different experimental conditions. Nevertheless, these results indicate that the kinetic compensation effect shows a relationship between them.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Steady-state concentric cylinder equipment was used to determine the effective thermal conductivity of beans (Phaseolus vulgaris). The measuring cell had no heated end guards and its length to diameter ratio was 10.5. Glass beads were employed to assess the accuracy and repeatability of the experimental system under heat transfer conditions. The results agree well with those reported in the literature so that the system can be considered reliable. Corn was used to verify the system's accuracy under heat and mass transfer conditions. Again the results were satisfactory. Moisture migration was observed and measured during the tests with beans, but this behavior does not compromise thermal conductivity values if both thermal and mass transfer steady-states are correctly interpreted. The effective thermal conductivity increases linearly with increasing grain moisture content. Statistical regression leads to good estimates of the fitted parameters.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The thermal conductivity of several commercial ZnO-based varistor systems was determined based on the laser-pulse method, a technique that proved extremely useful and easy to apply. Using this technique, the thermal conductivity was found to be dependent on the microstructural features of the devices, involving the mean grain size and phase composition. Among the phases existing in commercial ZnO-based varistors, ZniSb2O12 and Bi2O3 were found to contribute strongly to the thermal conductivity of the devices. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Lithium tantalate thin films (LiTaO3) with (50:50) stoichiometry were prepared by spin coating method using a polymeric organic solution. The films were deposited on silicon (100) substrates with 4 layers. The substrates were previously cleaned and then the solution of lithium tantalate was deposited by adjusting the speed at 5000 rpm. The thin films deposited were thermally treated from 350 to 600degreesC for 3 hours in order to study the influence of the thermal treatment temperature on the crystallinity, microstructure, grain size and roughness of the final film. X-ray diffraction (XRD) results showed that the films are polycrystalline and secondary phases free. The thickness of films was observed by scanning electron microscopy (SEM). The atomic force microscopy (AFM) studies showed that the grain size and roughness are strongly influenced by thermal treatment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

SnO2-based materials are used as sensors, catalysts and in electro-optical devices. This work aims to synthesize and characterize the SnO2/Sb2O3-based inorganic pigments, obtained by the polymeric precursor method, also known as Pechini method (based on the metallic citrate polymerization by means of ethylene glycol). The precursors were characterized by thermogravimetry (TG) and differential thermal analysis (DTA). After characterization, the precursors were heat-treated at different temperatures and characterized by X-ray diffraction. According to the TG/DTA curves basically two-step mass loss process was observed: the first one is related to the dehydration of the system; and the second one is representative to the combustion of the organic matter. Increase of the heat treatment temperature from 500 to 600 degrees C and 700 degrees C resulted higher crystallinity of the formed product.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Lead lanthanum zirconate titanate (PLZT) thin films with (9/65/35) stoichiometry were prepared by dip coating from polymeric precursor method. The films deposited on silicon (100) substrates, were thermally treated from 450° to 700°C for 6 hours in order to study the influence of thermal treatment on the crystallinity, microstructure, grain size and roughness of the final film. X-ray diffraction results showed that PLZT phase crystallizes at low temperature (500°C) and present preferential orientation. It was observed by scanning electron microscopy (SEM) that it is possible to obtain dense thin films at temperatures around 650°C. The atomic force microscopy (AFM) studies showed that the grain size and roughness are strongly influenced by the annealing temperature.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Strontium stannate titanate Sr(Sn, Ti)O3 is a solid solution between strontium stannate (SrSnO3) and strontium titanate (SrTiO3). In the present study, it was synthesized at low temperature by the polymeric precursor method, derived from the Pechini process. The powders were calcined in oxygen atmosphere in order to eliminate organic matter and to decrease the amount of SrCO3 formed during the synthesis. The powders were annealed at different temperatures to crystallize the samples into perovskites-type structures. All the compositions were studied by thermogravimetry (TG) and differential thermal analysis (DTA), infrared spectroscopy (IR) and X-ray diffraction (XRD). The lattice former, Ti4+ and Sn4+, had a meaningful influence in the mass loss, without changing the profile of the TG curves. On the other hand, DTA curves were strongly modified with the Ti4+:Sn4+ proportion in the system indicating that intermediate compounds may be formed during the synthesis being eliminated at different temperature ranges, while SrCO3 elimination occurs at higher temperature as shown by XRD and IR spectra. © 2013 Akadémiai Kiadó, Budapest, Hungary.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this thesis, the field of study related to the stability analysis of fluid saturated porous media is investigated. In particular the contribution of the viscous heating to the onset of convective instability in the flow through ducts is analysed. In order to evaluate the contribution of the viscous dissipation, different geometries, different models describing the balance equations and different boundary conditions are used. Moreover, the local thermal non-equilibrium model is used to study the evolution of the temperature differences between the fluid and the solid matrix in a thermal boundary layer problem. On studying the onset of instability, different techniques for eigenvalue problems has been used. Analytical solutions, asymptotic analyses and numerical solutions by means of original and commercial codes are carried out.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The lattice Boltzmann method is a popular approach for simulating hydrodynamic interactions in soft matter and complex fluids. The solvent is represented on a discrete lattice whose nodes are populated by particle distributions that propagate on the discrete links between the nodes and undergo local collisions. On large length and time scales, the microdynamics leads to a hydrodynamic flow field that satisfies the Navier-Stokes equation. In this thesis, several extensions to the lattice Boltzmann method are developed. In complex fluids, for example suspensions, Brownian motion of the solutes is of paramount importance. However, it can not be simulated with the original lattice Boltzmann method because the dynamics is completely deterministic. It is possible, though, to introduce thermal fluctuations in order to reproduce the equations of fluctuating hydrodynamics. In this work, a generalized lattice gas model is used to systematically derive the fluctuating lattice Boltzmann equation from statistical mechanics principles. The stochastic part of the dynamics is interpreted as a Monte Carlo process, which is then required to satisfy the condition of detailed balance. This leads to an expression for the thermal fluctuations which implies that it is essential to thermalize all degrees of freedom of the system, including the kinetic modes. The new formalism guarantees that the fluctuating lattice Boltzmann equation is simultaneously consistent with both fluctuating hydrodynamics and statistical mechanics. This establishes a foundation for future extensions, such as the treatment of multi-phase and thermal flows. An important range of applications for the lattice Boltzmann method is formed by microfluidics. Fostered by the "lab-on-a-chip" paradigm, there is an increasing need for computer simulations which are able to complement the achievements of theory and experiment. Microfluidic systems are characterized by a large surface-to-volume ratio and, therefore, boundary conditions are of special relevance. On the microscale, the standard no-slip boundary condition used in hydrodynamics has to be replaced by a slip boundary condition. In this work, a boundary condition for lattice Boltzmann is constructed that allows the slip length to be tuned by a single model parameter. Furthermore, a conceptually new approach for constructing boundary conditions is explored, where the reduced symmetry at the boundary is explicitly incorporated into the lattice model. The lattice Boltzmann method is systematically extended to the reduced symmetry model. In the case of a Poiseuille flow in a plane channel, it is shown that a special choice of the collision operator is required to reproduce the correct flow profile. This systematic approach sheds light on the consequences of the reduced symmetry at the boundary and leads to a deeper understanding of boundary conditions in the lattice Boltzmann method. This can help to develop improved boundary conditions that lead to more accurate simulation results.