985 resultados para Thermal Capacity


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Higher initial levels of pain and disability, older age, cold hyperalgesia, impaired sympathetic vasoconstriction and moderate post-traumatic stress symptoms have been shown to be associated with poor outcome 6 months following whiplash injury. This study prospectively investigated the predictive capacity of these variables at a long-term follow-up. Sixty-five of an initial cohort of 76 acutely injured whiplash participants were followed to 2-3 years post-accident. Motor function (ROM; kinaesthetic sense; activity of the superficial neck flexors (EMG) during cranio-cervical flexion), quantitative sensory testing (pressure, thermal pain thresholds and brachial plexus provocation test), sympathetic vasoconstrictor responses and psychological distress (GHQ-28, TSK and IES) were measured. The outcome measure was Neck Disability Index (NDI) scores. Participants with ongoing moderate/severe symptoms at 2-3 years continued to manifest decreased ROM, increased EMG during cranio-cervical flexion, sensory hypersensitivity and elevated levels of psychological distress when compared to recovered participants and those with milder symptoms. The latter two groups showed only persistent deficits in cervical muscle recruitment patterns. Higher initial NDI scores (OR 1.00-1.1), older age (OR 1.00-1.13), cold hyperalgesia (OR 1.1-1.13) and post-traumatic stress symptoms (OR 1.03-1.2) remained significant predictors of poor outcome at long-term follow-up (r(2) = 0.56). The robustness of these physical and psychological factors suggests that their assessment in the acute stage following whiplash injury will be important. (c) 2006 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We analyze the efficiency of coherent population trapping (CPT) in a superposition of the ground states of three-level atoms under the influence of the decoherence process induced by a broadband thermal field. We show that in a single atom there is no perfect CPT when the atomic transitions are affected by the thermal field. The perfect CPT may occur when only one of the two atomic transitions is affected by the thermal field. In the case when both atomic transitions are affected by the thermal field, we demonstrate that regardless of the intensity of the thermal field the destructive effect on the CPT can be circumvented by the collective behavior of the atoms. An analytic expression was obtained for the populations of the upper atomic levels which can be considered as a measure of the level of thermal decoherence. The results show that the collective interaction between the atoms can significantly enhance the population trapping in that the population of the upper state decreases with an increased number of atoms. The physical origin of this feature is explained by the semiclassical dressed-atom model of the system. We introduce the concept of multiatom collective coherent population trapping by demonstrating the existence of collective (entangled) states whose storage capacity is larger than that of the equivalent states of independent atoms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. We examined the effect of thermal acclimation on fighting success and underlying performance traits in the crayfish Cherax destructor. We tested the hypothesis that animals will be more successful when fighting at their acclimation temperature than at a colder or warmer temperature, and that changes in metabolic capacity underlie differences in behavioural performance. 2. Thermal acclimation (to 20 degrees C and to 30 degrees C) had a significant effect on behavioural contests, and the likelihood of winning was significantly greater when individuals fought at their acclimation temperature against an individual from an alternate acclimation temperature. 3. The ratio of ADP stimulated respiration to proton leak (respiratory control ratio) of isolated mitochondria increased significantly in chelae muscle of the cold-acclimated group, and differences in respiratory control ratio between winners and losers were significantly correlated with the outcome of agonistic encounters. However, acclimation did not affect tall muscle mitochondria or the activity of pyruvate kinase in either chelae or tail muscle. 4. The force produced by closing chelae was thermally insensitive within acclimation groups, and there were no significant differences between acclimation treatments. None the less, differences in chelae width between contestants were significantly correlated with the outcome of agonistic encounters, but this perceived resource holding power did not reflect the actual power of force production. 5. Thermal acclimation in C destructor has beneficial consequences for dominance and competitive ability, and the success of cold acclimated animals at the cold temperatures can be at least partly explained by concomitant up-regulation of oxidative ATP production capacity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis examined solar thermal collectors for use in alternative hybrid solar-biomass power plant applications in Gujarat, India. Following a preliminary review, the cost-effective selection and design of the solar thermal field were identified as critical factors underlying the success of hybrid plants. Consequently, the existing solar thermal technologies were reviewed and ranked for use in India by means of a multi-criteria decision-making method, the Analytical Hierarchy Process (AHP). Informed by the outcome of the AHP, the thesis went on to pursue the Linear Fresnel Reflector (LFR), the design of which was optimised with the help of ray-tracing. To further enhance collector performance, LFR concepts incorporating novel mirror spacing and drive mechanisms were evaluated. Subsequently, a new variant, termed the Elevation Linear Fresnel Reflector (ELFR) was designed, constructed and tested at Aston University, UK, therefore allowing theoretical models for the performance of a solar thermal field to be verified. Based on the resulting characteristics of the LFR, and data gathered for the other hybrid system components, models of hybrid LFR- and ELFR-biomass power plants were developed and analysed in TRNSYS®. The techno-economic and environmental consequences of varying the size of the solar field in relation to the total plant capacity were modelled for a series of case studies to evaluate different applications: tri-generation (electricity, ice and heat), electricity-only generation, and process heat. The case studies also encompassed varying site locations, capacities, operational conditions and financial situations. In the case of a hybrid tri-generation plant in Gujarat, it was recommended to use an LFR solar thermal field of 14,000 m2 aperture with a 3 tonne biomass boiler, generating 815 MWh per annum of electricity for nearby villages and 12,450 tonnes of ice per annum for local fisheries and food industries. However, at the expense of a 0.3 ¢/kWh increase in levelised energy costs, the ELFR increased saving of biomass (100 t/a) and land (9 ha/a). For solar thermal applications in areas with high land cost, the ELFR reduced levelised energy costs. It was determined that off-grid hybrid plants for tri-generation were the most feasible application in India. Whereas biomass-only plants were found to be more economically viable, it was concluded that hybrid systems will soon become cost competitive and can considerably improve current energy security and biomass supply chain issues in India.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work introduces a model in which agents of a network act upon one another according to three different kinds of moral decisions. These decisions are based on an increasing level of sophistication in the empathy capacity of the agent, a hierarchy which we name Piaget's ladder. The decision strategy of the agents is non-rational, in the sense they are arbitrarily fixed, and the model presents quenched disorder given by the distribution of its defining parameters. An analytical solution for this model is obtained in the large system limit as well as a leading order correction for finite-size systems which shows that typical realisations of the model develop a phase structure with both continuous and discontinuous non-thermal transitions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The acclimatization capacity of corals is a critical consideration in the persistence of coral reefs under stresses imposed by global climate change. The stress history of corals plays a role in subsequent response to heat stress, but the transcriptomic changes associated with these plastic changes have not been previously explored. In order to identify host transcriptomic changes associated with acquired thermal tolerance in the scleractinian coralAcropora millepora, corals preconditioned to a sub-lethal temperature of 3°C below bleaching threshold temperature were compared to both non-preconditioned corals and untreated controls using a cDNA microarray platform. After eight days of hyperthermal challenge, conditions under which non-preconditioned corals bleached and preconditioned corals (thermal-tolerant) maintained Symbiodinium density, a clear differentiation in the transcriptional profiles was revealed among the condition examined. Among these changes, nine differentially expressed genes separated preconditioned corals from non-preconditioned corals, with 42 genes differentially expressed between control and preconditioned treatments, and 70 genes between non-preconditioned corals and controls. Differentially expressed genes included components of an apoptotic signaling cascade, which suggest the inhibition of apoptosis in preconditioned corals. Additionally, lectins and genes involved in response to oxidative stress were also detected. One dominant pattern was the apparent tuning of gene expression observed between preconditioned and non-preconditioned treatments; that is, differences in expression magnitude were more apparent than differences in the identity of genes differentially expressed. Our work revealed a transcriptomic signature underlying the tolerance associated with coral thermal history, and suggests that understanding the molecular mechanisms behind physiological acclimatization would be critical for the modeling of reefs in impending climate change scenarios.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

© 2016. Published by The Company of Biologists Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The anharmonic phonon properties of SnSe in the Pnma phase were investigated with a combination of experiments and first-principles simulations. Using inelastic neutron scattering (INS) and nuclear resonant inelastic X-ray scattering (NRIXS), we have measured the phonon dispersions and density of states (DOS) and their temperature dependence, which revealed a strong, inhomogeneous shift and broadening of the spectrum on warming. First-principles simulations were performed to rationalize these measurements, and to explain the previously reported anisotropic thermal expansion, in particular the negative thermal expansion within the Sn-Se bilayers. Including the anisotropic strain dependence of the phonon free energy, in addition to the electronic ground state energy, is essential to reproduce the negative thermal expansion. From the phonon DOS obtained with INS and additional calorimetry measurements, we quantify the harmonic, dilational, and anharmonic components of the phonon entropy, heat capacity, and free energy. The origin of the anharmonic phonon thermodynamics is linked to the electronic structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The antimicrobial activity of atmospheric pressure non-thermal plasma has been exhaustively characterised, however elucidation of the interactions between biomolecules produced and utilised by bacteria and short plasma exposures are required for optimisation and clinical translation of cold plasma technology. This study characterizes the effects of non-thermal plasma exposure on acyl homoserine lactone (AHL)-dependent quorum sensing (QS). Plasma exposure of AHLs reduced the ability of such molecules to elicit a QS response in bacterial reporter strains in a dose-dependent manner. Short exposures (30-60 s) produce of a series of secondary compounds capable of eliciting a QS response, followed by the complete loss of AHL-dependent signalling following longer exposures. UPLC-MS analysis confirmed the time-dependent degradation of AHL molecules and their conversion into a series of by-products. FT-IR analysis of plasma-exposed AHLs highlighted the appearance of an OH group. In vivo assessment of the exposure of AHLs to plasma was examined using a standard in vivo model. Lettuce leaves injected with the rhlI/lasI mutant PAO-MW1 alongside plasma treated N-butyryl-homoserine lactone and n-(3-oxo-dodecanoyl)-homoserine lactone, exhibited marked attenuation of virulence. This study highlights the capacity of atmospheric pressure non-thermal plasma to modify and degrade AHL autoinducers thereby attenuating QS-dependent virulence in P. aeruginosa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new method for the evaluation of the efficiency of parabolic trough collectors, called Rapid Test Method, is investigated at the Solar Institut Jülich. The basic concept is to carry out measurements under stagnation conditions. This allows a fast and inexpensive process due to the fact that no working fluid is required. With this approach, the temperature reached by the inner wall of the receiver is assumed to be the stagnation temperature and hence the average temperature inside the collector. This leads to a systematic error which can be rectified through the introduction of a correction factor. A model of the collector is simulated with COMSOL Multipyisics to study the size of the correction factor depending on collector geometry and working conditions. The resulting values are compared with experimental data obtained at a test rig at the Solar Institut Jülich. These results do not match with the simulated ones. Consequentially, it was not pos-sible to verify the model. The reliability of both the model with COMSOL Multiphysics and of the measurements are analysed. The influence of the correction factor on the rapid test method is also studied, as well as the possibility of neglecting it by measuring the receiver’s inner wall temperature where it receives the least amount of solar rays. The last two chapters analyse the specific heat capacity as a function of pressure and tem-perature and present some considerations about the uncertainties on the efficiency curve obtained with the Rapid Test Method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transient power dissipation profiles in handheld electronic devices alternate between high and low power states depending on usage. Capacitive thermal management based on phase change materials potentially offers a fan-less thermal management for such transient profiles. However, such capacitive management becomes feasible only if there is a significant enhancement in the enthalpy change per unit volume of the phase change material since existing bulk materials such as paraffin fall short of requirements. In this thesis I propose novel nanostructured thin-film materials that can potentially exhibit significantly enhanced volumetric enthalpy change. Using fundamental thermodynamics of phase transition, calculations regarding the enhancement resulting from superheating in such thin film systems is conducted. Furthermore design of a microfabricated calorimeter to measure such enhancements is explained in detail. This work advances the state-of-art of phase change materials for capacitive cooling of handheld devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bone is a dynamic, highly vascularized tissue with a unique capacity to heal and regenerate without scarring. However, drilling remains a concern in several clinical procedures due to thermal damage of the bone and surrounding tissue. The success of this surgeries is dependent of many factors and also in temperature generation during the drilling bone. When an excessive heat is produced during the drilling, thermal necrosis can occur and the bone suffers injuries. Studies have shown that the increased temperature is directly related with the drilling parameters, particularly, the drill speed, feed-rate, applied force, the depth of cut, the geometry of the drill bit, the use or not of a cooling system and also the type of bone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Water deficit is the most limiting factor for yield and fruit-quality parameters in papaya crop (Carica papaya L.), deficit-irrigation (DI) strategies offering a feasible alternative to manage limiting water resources. When DI is applied, it is crucial to assess the physiological status of the crop in order to maintain the plant within a threshold value of water stress so as no to affect yield or fruit-quality parameters. The aim of this work was to evaluate the feasibility of thermal imaging in young papaya plants to assess the physiological status of this crop when it is subjected to different DI regimes, studying the relationships between the changes in leaf temperature (Tleaf) and in the major physiological parameters (i.e., stomatal conductance to water vapor, gs; transpiration, E; and net photosynthesis, An). The trial was conducted in a greenhouse from March to April of 2012. Plants were grown in pots and subjected to four irrigation treatments: (1) a full irrigation treatment (control), maintained at field capacity; (2) a partial root-zone drying treatment, irrigated with 50% of the total water applied to control to only one side of roots, alternating the sides every 7 days; (3) a regulated deficit irrigation (50% of the control, applied to both sides of plant); (4) and a non-irrigated treatment, in which irrigation was withheld from both sides of the split root for 14 days, followed by full irrigation until the end of the study. Significant relationships were found between Tleaf and major physiological variables such as gs, E and An. Additionally, significant relationships were found between the difference of leaf-to-air temperature (ΔTleaf–air) and gas-exchange measurements, which were used to establish the optimum range of ΔTleaf–air as a preliminary step to the crop-water monitoring and irrigation scheduling in papaya, using thermal imaging as the main source of information. According to the results, we conclude that thermal imaging is a promising technique to monitor the physiological status of papaya during drought conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Water deficit is the most limiting factor for yield and fruit-quality parameters in papaya crop (Carica papaya L.), deficit-irrigation (DI) strategies offering a feasible alternative to manage limiting water resources. When DI is applied, it is crucial to assess the physiological status of the crop in order to maintain the plant within a threshold value of water stress so as no to affect yield or fruit-quality parameters. The aim of this work was to evaluate the feasibility of thermal imaging in young papaya plants to assess the physiological status of this crop when it is subjected to different DI regimes, studying the relationships between the changes in leaf temperature (Tleaf) and in the major physiological parameters (i.e., stomatal conductance to water vapor, gs; transpiration, E; and net photosynthesis, An). The trial was conducted in a greenhouse from March to April of 2012. Plants were grown in pots and subjected to four irrigation treatments: (1) a full irrigation treatment (control), maintained at field capacity; (2) a partial root-zone drying treatment, irrigated with 50% of the total water applied to control to only one side of roots, alternating the sides every 7 days; (3) a regulated deficit irrigation (50% of the control, applied to both sides of plant); (4) and a non-irrigated treatment, in which irrigation was withheld from both sides of the split root for 14 days, followed by full irrigation until the end of the study. Significant relationships were found between Tleaf and major physiological variables such as gs, E and An. Additionally, significant relationships were found between the difference of leaf-to-air temperature (ΔTleaf–air) and gas-exchange measurements, which were used to establish the optimum range of ΔTleaf–air as a preliminary step to the crop-water monitoring and irrigation scheduling in papaya, using thermal imaging as the main source of information. According to the results, we conclude that thermal imaging is a promising technique to monitor the physiological status of papaya during drought conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Raman spectroscopy of formamide-intercalated kaolinites treated using controlled-rate thermal analysis technology (CRTA), allowing the separation of adsorbed formamide from intercalated formamide in formamide-intercalated kaolinites, is reported. The Raman spectra of the CRTA-treated formamide-intercalated kaolinites are significantly different from those of the intercalated kaolinites, which display a combination of both intercalated and adsorbed formamide. An intense band is observed at 3629 cm-1, attributed to the inner surface hydroxyls hydrogen bonded to the formamide. Broad bands are observed at 3600 and 3639 cm-1, assigned to the inner surface hydroxyls, which are hydrogen bonded to the adsorbed water molecules. The hydroxyl-stretching band of the inner hydroxyl is observed at 3621 cm-1 in the Raman spectra of the CRTA-treated formamide-intercalated kaolinites. The results of thermal analysis show that the amount of intercalated formamide between the kaolinite layers is independent of the presence of water. Significant differences are observed in the CO stretching region between the adsorbed and intercalated formamide.